Two numerical methods for solving a backward heat conduction problem

被引:42
|
作者
Xiong, Xiang-Tuan [1 ]
Fu, Chu-Li [1 ]
Qian, Zhi [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
inverse problem; backward heat conduction; central difference; quasi-reversibility; regularization;
D O I
10.1016/j.amc.2005.11.114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a central difference method and a quasi-reversibility method for solving a backward heat conduction problem (BHCP) numerically. For these two numerical methods, we give the stability analysis. Meanwhile, we investigate the roles of regularization parameters in these two methods. Numerical results show that our algorithm is effective. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:370 / 377
页数:8
相关论文
共 50 条
  • [1] Numerical Method for Solving Nonhomogeneous Backward Heat Conduction Problem
    Su, LingDe
    Jiang, TongSong
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 2018
  • [2] Numerical and experimental verification of two methods for solving an inverse heat conduction problem
    Duda, Piotr
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 84 : 1101 - 1112
  • [3] Solving a backward heat conduction problem by variational method
    Ma, Yun-Jie
    Fu, Chu-Li
    Zhang, Yuan-Xiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 624 - 634
  • [4] Two stable methods with numerical experiments for solving the backward heat equation
    Ternat, Fabien
    Orellana, Oscar
    Daripa, Prabir
    [J]. APPLIED NUMERICAL MATHEMATICS, 2011, 61 (02) : 266 - 284
  • [5] Numerical solution of nonhomogeneous backward heat conduction problem
    Yue, Sufang
    Zhang, Hongmei
    Ma, Zongli
    [J]. International Journal of Applied Mathematics and Statistics, 2013, 42 (12): : 257 - 264
  • [6] Numerical Solution of Nonhomogeneous Backward Heat Conduction Problem
    Yue, Sufang
    Zhang, Hongmei
    Ma, Zongli
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 257 - 264
  • [7] Solving the backward heat conduction problem by homotopy analysis method
    Liu, Jijun
    Wang, Bingxian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 128 : 84 - 97
  • [9] A regularization method for solving the radially symmetric backward heat conduction problem
    Cheng, Wei
    Ma, Yun-Jie
    Fu, Chu-Li
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 30 : 38 - 43
  • [10] On three spectral regularization methods for a backward heat conduction problem
    Xiong, Xiang-Tuan
    Fu, Chu-Li
    Qian, Zhi
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (06) : 1281 - 1290