Inverse-designed diamond photonics

被引:120
|
作者
Dory, Constantin [1 ]
Vercruysse, Dries [1 ]
Yang, Ki Youl [1 ]
Sapra, Neil V. [1 ]
Rugar, Alison E. [1 ]
Sun, Shuo [1 ]
Lukin, Daniil M. [1 ]
Piggott, Alexander Y. [1 ]
Zhang, Jingyuan L. [1 ]
Radulaski, Marina [1 ,2 ]
Lagoudakis, Konstantinos G. [1 ,3 ]
Su, Logan [1 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[2] Univ Calif Davis, Elect & Comp Engn, Davis, CA 95616 USA
[3] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
QUANTUM EMITTERS; GRATING COUPLERS; HIGH-EFFICIENCY; ENTANGLEMENT; SPINS; QUBITS; DEFECT; FIBER;
D O I
10.1038/s41467-019-11343-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Inverse-designed diamond photonics
    Constantin Dory
    Dries Vercruysse
    Ki Youl Yang
    Neil V. Sapra
    Alison E. Rugar
    Shuo Sun
    Daniil M. Lukin
    Alexander Y. Piggott
    Jingyuan L. Zhang
    Marina Radulaski
    Konstantinos G. Lagoudakis
    Logan Su
    Jelena Vučković
    [J]. Nature Communications, 10
  • [2] Inverse-Designed Photonics for Semiconductor Foundries
    Piggott, Alexander Y.
    Ma, Eric Y.
    Su, Logan
    Ahn, Geun Ho
    Sapra, Neil V.
    Vercruysse, Dries
    Netherton, Andrew M.
    Khope, Akhilesh S. P.
    Bowers, John E.
    Vuckovic, Jelena
    [J]. ACS PHOTONICS, 2020, 7 (03): : 569 - 575
  • [3] Inverse-designed silicon carbide quantum and nonlinear photonics
    Joshua Yang
    Melissa A. Guidry
    Daniil M. Lukin
    Kiyoul Yang
    Jelena Vučković
    [J]. Light: Science & Applications, 12
  • [4] Inverse-designed silicon carbide quantum and nonlinear photonics
    Yang, Joshua
    Guidry, Melissa A.
    Lukin, Daniil M.
    Yang, Kiyoul
    Vuckovic, Jelena
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [5] Solving Interdisciplinary Problems with Inverse-designed Photonics Integrated Circuits
    Jia, Hao
    Yang, Shanglin
    Yang, Lin
    [J]. 2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [6] Inverse-designed reflectors
    Noriaki Horiuchi
    [J]. Nature Photonics, 2023, 17 : 933 - 933
  • [7] Inverse-designed reflectors
    Horiuchi, Noriaki
    [J]. NATURE PHOTONICS, 2023, 17 (11) : 933 - 933
  • [8] Inverse-designed spinodoid metamaterials
    Kumar, Siddhant
    Tan, Stephanie
    Zheng, Li
    Kochmann, Dennis M.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [9] Inverse-designed integrated biosensors
    Didari-Bader, Azadeh
    Pelton, Sophie
    Estakhri, Mohammadi
    [J]. OPTICAL MATERIALS EXPRESS, 2024, 14 (07): : 1710 - 1720
  • [10] Inverse-designed spinodoid metamaterials
    Siddhant Kumar
    Stephanie Tan
    Li Zheng
    Dennis M. Kochmann
    [J]. npj Computational Materials, 6