On stable complete hypersurfaces with vanishing r-mean curvature

被引:5
|
作者
Do Carmo, M
Elbert, MF
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Fed Univ Rio De Janeiro, Inst Matemat, BR-21941590 Rio De Janeiro, Brazil
关键词
D O I
10.2748/tmj/1113246548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A form of Bernstein theorem states that a complete stable minimal surface in euclidean space is a plane. A generalization of this statement is that there exists no complete stable hypersurface of an n-euclidean space with vanishing (n - I)-mean curvature and nowhere zero Gauss-Kronecker curvature. We show that this is the case, provided the immersion is proper and the total curvature is finite.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [1] On hypersurfaces with zero r-mean curvature
    Ferreira, Walterson P.
    Tenenblat, Keti
    RESULTS IN MATHEMATICS, 2008, 52 (3-4) : 261 - 280
  • [2] On Hypersurfaces with Zero r-Mean Curvature
    Walterson P. Ferreira
    Keti Tenenblat
    Results in Mathematics, 2008, 52 : 261 - 280
  • [3] Stability of hypersurfaces with constant r-mean curvature
    Barbosa, JLM
    Colares, AG
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (03) : 277 - 297
  • [4] Hypersurfaces with flat r-mean curvature and Ribaucour transformations
    Ferreira, Walterson
    Tenenblat, Keti
    International Journal of Applied Mathematics and Statistics, 2007, 11 (NO7): : 38 - 51
  • [5] Hypersurfaces with flat r-mean curvature and Ribaucour transformations
    Ferreira, Walterson
    Tenenblat, Keti
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 11 (N07): : 38 - 51
  • [6] Stability of hypersurfaces with vanishing r-mean curvatures in Euclidean spaces
    Alencar, H
    do Carmo, M
    Elbert, MF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 554 : 201 - 216
  • [7] On complete graphs with negative R-mean curvature
    Elbert, MF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) : 1443 - 1450
  • [8] The r-mean curvature and rigidity of compact hypersurfaces in the Euclidean space
    Costa-Filho, Wagner Oliveira
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 60 (04) : 903 - 910
  • [9] The r-mean curvature and rigidity of compact hypersurfaces in the Euclidean space
    Wagner Oliveira Costa-Filho
    Annals of Global Analysis and Geometry, 2021, 60 : 903 - 910
  • [10] Embedded positive constant r-mean curvature hypersurfaces in Mm x R
    Cheng, X
    Rosenberg, H
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (02): : 183 - 199