Encoding Color Information for Visual Tracking: Algorithms and Benchmark

被引:587
|
作者
Liang, Pengpeng [1 ,2 ]
Blasch, Erik [3 ]
Ling, Haibin [2 ,4 ]
机构
[1] HiScene Informat Technol, Meitu HiScene Lab, Shanghai 201210, Peoples R China
[2] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
[3] Air Force Res Lab, Rome, NY 13441 USA
[4] S China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Visual tracking; color; benchmark; evaluation; ONLINE OBJECT TRACKING;
D O I
10.1109/TIP.2015.2482905
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.
引用
收藏
页码:5630 / 5644
页数:15
相关论文
共 50 条
  • [1] A BENCHMARK FOR ROBUSTNESS ANALYSIS OF VISUAL TRACKING ALGORITHMS
    Fang, Yuming
    Yuan, Yuan
    Xu, Long
    Lin, Weisi
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1120 - 1124
  • [2] CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
    Lukezic, Alan
    Kart, Ugur
    Kapyla, Jani
    Durmush, Ahmed
    Kamarainen, Joni-Kristian
    Matas, Jiri
    Kristan, Matej
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10012 - 10021
  • [3] A benchmark for comparison of cell tracking algorithms
    Maska, Martin
    Ulman, Vladimir
    Svoboda, David
    Matula, Pavel
    Matula, Petr
    Ederra, Cristina
    Urbiola, Ainhoa
    Espana, Tomas
    Venkatesan, Subramanian
    Balak, Deepak M. W.
    Karas, Pavel
    Bolckova, Tereza
    Streitova, Marketa
    Carthel, Craig
    Coraluppi, Stefano
    Harder, Nathalie
    Rohr, Karl
    Magnusson, Klas E. G.
    Jalden, Joakim
    Blau, Helen M.
    Dzyubachyk, Oleh
    Krizek, Pavel
    Hagen, Guy M.
    Pastor-Escuredo, David
    Jimenez-Carretero, Daniel
    Ledesma-Carbayo, Maria J.
    Munoz-Barrutia, Arrate
    Meijering, Erik
    Kozubek, Michal
    Ortiz-de-Solorzano, Carlos
    [J]. BIOINFORMATICS, 2014, 30 (11) : 1609 - 1617
  • [4] LDA BASED COLOR INFORMATION FUSION FOR VISUAL OBJECTS TRACKING
    Qi, Fei
    Song, Xiaowei
    Shi, Guangming
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2201 - 2204
  • [5] DETECTING OCCLUSION FROM COLOR INFORMATION TO IMPROVE VISUAL TRACKING
    Siena, Stephen
    Kumar, B. V. K. Vijaya
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1110 - 1114
  • [6] ENCODING AND DECODING OF COLOR INFORMATION
    MACOVSKI, A
    [J]. APPLIED OPTICS, 1972, 11 (02): : 416 - &
  • [7] Color encoding specificity in visual memory
    Spence, I
    Wong, P
    Rastegar, N
    Rusan, M
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2004, 39 (5-6) : 59 - 59
  • [8] Direct selection by color for visual encoding
    Esther Vierck
    Jeff Miller
    [J]. Perception & Psychophysics, 2005, 67 : 483 - 494
  • [9] Direct selection by color for visual encoding
    Vierck, E
    Miller, J
    [J]. PERCEPTION & PSYCHOPHYSICS, 2005, 67 (03): : 483 - 494
  • [10] Visual Tracking with Filtering Algorithms
    Bocsi, Botond A.
    Csato, Lehel
    [J]. 2008 IEEE 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, PROCEEDINGS, 2008, : 269 - 274