Generalized topographic block model

被引:0
|
作者
Priam, Rodolphe [1 ]
Nadif, Mohamed [2 ]
Govaert, Gerard [3 ]
机构
[1] Univ Southampton, S3RI, Southampton SO17 1BJ, Hants, England
[2] Univ Paris 05, LIPADE, UFR Math Informat, F-75270 Paris, France
[3] UTC, CNRS, UMR Heudiasyc 6599, Ctr Rech Royallieu, F-60205 Compiegne, France
关键词
Latent block mixture model; Exponential family; Generative topographic mapping; Block expectation-maximization; Visualisation; CLUSTER DETECTION; VISUALIZATION; ALGORITHMS; GTM;
D O I
10.1016/j.neucom.2015.04.115
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Co-clustering leads to parsimony in data visualisation with a number of parameters dramatically reduced in comparison to the dimensions of the data sample. Herein, we propose a new generalized approach for nonlinear mapping by a re-parameterization of the latent block mixture model. The densities modeling the blocks are in an exponential family such that the Gaussian, Bernoulli and Poisson laws are particular cases. The inference of the parameters is derived from the block expectation-maximization algorithm with a Newton-Raphson procedure at the maximization step. Empirical experiments with textual data validate the interest of our generalized model. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 449
页数:8
相关论文
共 50 条
  • [1] The block generative topographic mapping
    Priam, Rodolphe
    Nadif, Mohamed
    Govaert, Gerard
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2008, 5064 : 13 - +
  • [2] A generalized stochastic block model for overlapping community detection
    Liu, Xuan-Chen
    Zhang, Li-Jie
    Xu, Xin-Jian
    [J]. EPL, 2024, 146 (04)
  • [3] Topographic-isostatic reductions in satellite gravity gradiometry based on a generalized condensation model
    Heck, B
    Wild, F
    [J]. Window on the Future of Geodesy, 2005, 128 : 294 - 299
  • [4] Equilibrium analysis of bitcoin block withholding attack: A generalized model
    Di, Wu
    Liu Xiang-dong
    Yan Xiang-bin
    Rui, Peng
    Gang, Li
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 185 : 318 - 328
  • [5] ESTIMATION LINEAR MODEL USING BLOCK GENERALIZED INVERSE OF A MATRIX
    Jasinska, Elzbieta
    Preweda, Edward
    [J]. GEOCONFERENCE ON INFORMATICS, GEOINFORMATICS AND REMOTE SENSING - CONFERENCE PROCEEDINGS, VOL II, 2013, : 167 - 174
  • [6] Generalized operators for sculpting digital topographic surfaces
    Westort, C
    [J]. ADVANCES IN GIS RESEARCH II, 1997, : 491 - 504
  • [7] BLOCK GENERALIZED INVERSES
    HARTWIG, RE
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1976, 61 (03) : 197 - 251
  • [8] Phase transition for the generalized two-community stochastic block model
    Lee, Sunmin
    Lee, Ji Oon
    [J]. JOURNAL OF APPLIED PROBABILITY, 2024, 61 (02) : 385 - 400
  • [9] Topographic Bernoulli block mixture mapping for binary tables
    Rodolphe Priam
    Mohamed Nadif
    Gérard Govaert
    [J]. Pattern Analysis and Applications, 2014, 17 : 839 - 847
  • [10] Topographic Bernoulli block mixture mapping for binary tables
    Priam, Rodolphe
    Nadif, Mohamed
    Govaert, Gerard
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2014, 17 (04) : 839 - 847