A SENSITIVITY ANALYSIS FOR BAYESIAN NONPARAMETRIC DENSITY ESTIMATORS

被引:0
|
作者
Nieto-Barajas, Luis E. [1 ]
Prunster, Igor [2 ]
机构
[1] ITAM, Dept Estadist, Mexico City 01000, DF, Mexico
[2] Univ Turin, Dipartimento Stat & Matemat Applicata, I-10134 Turin, Italy
关键词
Bayesian nonparametric inference; density estimation; increasing additive process; latent variables; Levy process; mixture model; sensitivity; NORMALIZED RANDOM MEASURES; DIRICHLET PROCESS PRIOR; GAUSSIAN COMPONENTS; MODELS; INFERENCE; MIXTURES; PRIORS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian nonparametric methods have recently gained popularity in the context of density estimation. In particular, the density estimator arising from the mixture of Dirichlet process is now commonly exploited in practice. In this paper we perform a sensitivity analysis for a wide class of Bayesian nonparametric density estimators, including the mixture of Dirichlet process and the recently proposed mixture of normalized inverse Gaussian process. Whereas previous studies focused only on the tuning of prior parameters, our approach consists of perturbing the prior itself by means of a suitable function. In order to carry out the sensitivity. analysis we derive representations for posterior quantities and develop an algorithm for drawing samples from mixtures with a perturbed nonparametric component. Our results bring out some clear evidence for Bayesian nonparametric density estimators, and we provide an heuristic explanation for the neutralization of the perturbation in the posterior distribution.
引用
收藏
页码:685 / 705
页数:21
相关论文
共 50 条
  • [1] Nonparametric Bayesian estimators for counting processes
    Kim, YD
    [J]. ANNALS OF STATISTICS, 1999, 27 (02): : 562 - 588
  • [2] Nonparametric spectral density estimators
    Alekseev, VG
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2000, 45 (02) : 168 - 173
  • [3] Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models
    Saha, Abhijoy
    Kurtek, Sebastian
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2019, 81 (01): : 104 - 143
  • [4] Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models
    Abhijoy Saha
    Sebastian Kurtek
    [J]. Sankhya A, 2019, 81 (1): : 104 - 143
  • [5] STUDY OF CLASS OF NONPARAMETRIC DENSITY ESTIMATORS
    BOSQ, D
    BLEUEZ, J
    [J]. ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1978, 14 (04): : 479 - 486
  • [6] MAP estimators and their consistency in Bayesian nonparametric inverse problems
    Dashti, M.
    Law, K. J. H.
    Stuart, A. M.
    Voss, J.
    [J]. INVERSE PROBLEMS, 2013, 29 (09)
  • [7] GENERALIZED BAYESIAN-TYPE ESTIMATORS - ROBUST AND SENSITIVITY ANALYSIS
    HANOUSEK, J
    [J]. KYBERNETIKA, 1994, 30 (03) : 271 - 278
  • [8] Sensitivity analysis of Bayesian nonparametric spatial crash frequency models
    Li, Yihua
    Gill, Gurdiljot Singh
    Cheng, Wen
    Singh, Mankirat
    Zhang, Yongping
    Kwong, Jerry
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [9] Nonparametric density deconvolution by weighted kernel estimators
    Martin L. Hazelton
    Berwin A. Turlach
    [J]. Statistics and Computing, 2009, 19 : 217 - 228
  • [10] Nonparametric density deconvolution by weighted kernel estimators
    Hazelton, Martin L.
    Turlach, Berwin A.
    [J]. STATISTICS AND COMPUTING, 2009, 19 (03) : 217 - 228