Optimal Choice of Parameters for Firefly Algorithm

被引:30
|
作者
Mo Yuan-bin [1 ]
Ma Yan-zhui [2 ]
Zheng Qiao-yan [1 ]
机构
[1] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi, Peoples R China
[2] Guangxi Univ Natl, Guangxi Key Lab Mixed Comp & Integrated Circuit, Nanning 530006, Peoples R China
关键词
Swarm Intelligence; Firefly Algorithm; Optimal Parameters; STRATEGY;
D O I
10.1109/ICDMA.2013.210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The firefly algorithm (FA) is a novel metaheuristic algorithm inspired by the social behavior of fireflies and the phenomenon of bioluminescent communication. The effects of the major parameters on FA were systematically investigated based on some benchmark functions. The step size factor, absorption coeffcient and population size all have significant impact on the performance of FA. The absorption coeffcient and step size factor have optimal values in practical application, and improper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. In this paper, the characteristics of FA parameters are discribed and guidelines for determining parameter values are given.
引用
收藏
页码:887 / 892
页数:6
相关论文
共 50 条
  • [1] Optimal Choice of Parameters for Fireworks Algorithm
    Kumar, Vijay
    Chhabra, Jitender Kumar
    Kumar, Dinesh
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS, 2015, 70 : 334 - 340
  • [2] A Parametric Testing of the Firefly Algorithm in the Determination of the Optimal Osmotic Drying Parameters for Papaya
    Yeomans, Julian Scott
    Imanirad, Raha
    [J]. 2014 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), 2014, : 14 - 19
  • [3] A PARAMETRIC TESTING OF THE FIREFLY ALGORITHM IN THE DETERMINATION OF THE OPTIMAL OSMOTIC DRYING PARAMETERS OF MUSHROOMS
    Yeomans, Julian Scott
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2014, 4 (04) : 257 - 266
  • [4] Firefly algorithm with adaptive control parameters
    Hui Wang
    Xinyu Zhou
    Hui Sun
    Xiang Yu
    Jia Zhao
    Hai Zhang
    Laizhong Cui
    [J]. Soft Computing, 2017, 21 : 5091 - 5102
  • [5] Firefly algorithm with adaptive control parameters
    Wang, Hui
    Zhou, Xinyu
    Sun, Hui
    Yu, Xiang
    Zhao, Jia
    Zhang, Hai
    Cui, Laizhong
    [J]. SOFT COMPUTING, 2017, 21 (17) : 5091 - 5102
  • [6] Optimal choice of parameters for a density-based clustering algorithm
    Gan, WY
    Li, DY
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 603 - 606
  • [7] ALGORITHM FOR OPTIMAL CHOICE OF PARAMETERS OF COMPLEX SYSTEMS FOR CONTROL OF THEIR EFFICIENCY
    ALEKSEEV, OG
    STAROSEL.VG
    [J]. AUTOMATION AND REMOTE CONTROL, 1965, 26 (09) : 1580 - &
  • [9] Generalized Firefly Algorithm for Optimal Transmit Beamforming
    Le, Tuan Anh
    Yang, Xin-She
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 5863 - 5877
  • [10] Discovering optimal clusters using firefly algorithm
    Mohammed, Athraa Jasim
    Yusof, Yuhanis
    Husni, Husniza
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2016, 8 (04) : 330 - 347