Smoothing approach for a class of nonsmooth optimal control problems

被引:13
|
作者
Skandari, M. H. Noori [1 ]
Kamyad, A. V. [2 ]
Effati, S. [2 ]
机构
[1] Univ Shahrood, Sch Math Sci, Shahrood, Iran
[2] Ferdowsi Univ Mashhad, Sch Math Sci, Mashhad, Iran
关键词
Chebyshev pseudo-spectral method; Generalized derivative; Nonlinear programming; Nonsmooth optimal control; NONLINEAR OPTIMAL-CONTROL; PARAMETERIZATION;
D O I
10.1016/j.apm.2015.05.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we consider a nonsmooth optimal control problem. First we convert this problem into the corresponding smooth optimal control problem using a practical generalized derivative. Next, we utilize the Chebyshev pseudo-spectral method to solve the smooth problem and analyze the feasibility and convergence of the approximations obtained. Finally, we approximate the optimal solutions of some nonsmooth optimal control problems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:886 / 903
页数:18
相关论文
共 50 条
  • [1] Finite difference smoothing solutions of nonsmooth constrained optimal control problems
    Chen, XJ
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2005, 26 (01) : 49 - 68
  • [2] SMOOTHING TECHNIQUE OF NONSMOOTH NEWTON METHODS FOR CONTROL-STATE CONSTRAINED OPTIMAL CONTROL PROBLEMS
    Chen, Jinhai
    Gerdts, Matthias
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (04) : 1982 - 2011
  • [3] A DYNAMIC SMOOTHING TECHNIQUE FOR A CLASS OF NONSMOOTH OPTIMIZATION PROBLEMS ON MANIFOLDS
    Beck, Amir
    Rosset, Israel
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 1473 - 1493
  • [4] Optimal control problems and nonsmooth analysis
    Zhu, QJ
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 25 - 28
  • [5] Numerical method for a class of optimal control problems subject to nonsmooth functional constraints
    Wu, C. Z.
    Teo, K. L.
    Zhao, Yi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (02) : 311 - 325
  • [6] Leveraging randomized smoothing for optimal control of nonsmooth dynamical systems
    Le Lidec, Quentin
    Schramm, Fabian
    Montaut, Louis
    Schmid, Cordelia
    Laptev, Ivan
    Carpentier, Justin
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2024, 52
  • [7] AN EFFICIENT APPROACH TO A CLASS OF NONSMOOTH OPTIMIZATION PROBLEMS
    LI, XS
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1994, 37 (03): : 323 - 330
  • [8] Optimality conditions and duality models for a class of nonsmooth constrained fractional optimal control problems
    Zalmai, GJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) : 114 - 149
  • [9] Optimal Control Problems with Nonsmooth Mixed Constraints
    de Pinho, M. d. R.
    Silva, G. N.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4781 - 4786
  • [10] PROXIMAL ITERATIVE GAUSSIAN SMOOTHING ALGORITHM FOR A CLASS OF NONSMOOTH CONVEX MINIMIZATION PROBLEMS
    Liu, Sanming
    Wang, Zhijie
    Liu, Chongyang
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 79 - 89