First passage time on pattern formation in a non-local Fisher population dynamics

被引:3
|
作者
Fuentes, Miguel A. [1 ,2 ,3 ,4 ]
Caceres, Manuel O. [2 ,3 ]
机构
[1] Santa Fe Inst, Santa Fe, NM 87501 USA
[2] Ctr Atom Bariloche, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Univ Desarrollo, CICS Fac Gobierno, Ctr Invest Complejidad Social, Santiago, Chile
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2013年 / 11卷 / 12期
关键词
mean first passage time; non-local interactions; pattern formation;
D O I
10.2478/s11534-013-0268-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use stochastic dynamics to develop the patterned attractor of a non-local extended system. This is done analytically using the stochastic path perturbation approach scheme, where a theory of perturbation in the small noise parameter is introduced to analyze the random escape of the stochastic field from the unstable state. Emphasis is placed on the specific mode selection that these types of systems exhibit. Concerning the stochastic propagation of the front we have carried out Monte Carlo simulations which coincide with our theoretical predictions.
引用
收藏
页码:1623 / 1628
页数:6
相关论文
共 50 条
  • [1] On a non-local equation arising in population dynamics
    Coville, Jerome
    Dupaigne, Louis
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 : 727 - 755
  • [2] Fluctuations impact on a pattern-forming model of population dynamics with non-local interactions
    López, C
    Hernández-García, E
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 199 (1-2) : 223 - 234
  • [3] LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS
    FURTER, J
    GRINFELD, M
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) : 65 - 80
  • [4] The peridynamic stress tensors and the non-local to local passage
    Pelech, Petr
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (06):
  • [5] Bifurcation and Pattern Formation in an Activator–Inhibitor Model with Non-local Dispersal
    Xiaoli Wang
    Junping Shi
    Guohong Zhang
    [J]. Bulletin of Mathematical Biology, 2022, 84
  • [6] Non-local crowd dynamics
    Colombo, Rinaldo M.
    Garavello, Mauro
    Lecureux-Mercier, Magali
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (13-14) : 769 - 772
  • [7] Rich dynamics in a non-local population model over three patches
    Weng, Peixuan
    Xiao, Cuntao
    Zou, Xingfu
    [J]. NONLINEAR DYNAMICS, 2010, 59 (1-2) : 161 - 172
  • [8] Rich dynamics in a non-local population model over three patches
    Peixuan Weng
    Cuntao Xiao
    Xingfu Zou
    [J]. Nonlinear Dynamics, 2010, 59 : 161 - 172
  • [9] Bifurcation and Pattern Formation in an Activator-Inhibitor Model with Non-local Dispersal
    Wang, Xiaoli
    Shi, Junping
    Zhang, Guohong
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (12)
  • [10] Propagation in a Fisher-KPP equation with non-local advection
    Hamel, Francois
    Henderson, Christopher
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (07)