A semiparametric copula method for Cox models with covariate measurement error

被引:8
|
作者
Kim, Sehee [1 ]
Li, Yi [2 ]
Spiegelman, Donna [3 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Kidney Epidemiol & Cost Ctr, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Harvard Univ, Dept Epidemiol, Boston, MA 02115 USA
[4] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
[5] Harvard Univ, Dept Nutr, Boston, MA 02115 USA
关键词
Bias correction; Copula; Error-prone covariate; Measurement error; Semiparametric; Survival analysis; FAILURE TIME REGRESSION; PROPORTIONAL HAZARDS MODEL; CALIBRATION METHOD; PHYSICAL-ACTIVITY; ESTIMATOR; SURVIVAL;
D O I
10.1007/s10985-014-9315-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider measurement error problem in the Cox model, where the underlying association between the true exposure and its surrogate is unknown, but can be estimated from a validation study. Under this framework, one can accommodate general distributional structures for the error-prone covariates, not restricted to a linear additive measurement error model or Gaussian measurement error. The proposed copula-based approach enables us to fit flexible measurement error models, and to be applicable with an internal or external validation study. Large sample properties are derived and finite sample properties are investigated through extensive simulation studies. The methods are applied to a study of physical activity in relation to breast cancer mortality in the Nurses' Health Study.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] A semiparametric copula method for Cox models with covariate measurement error
    Sehee Kim
    Yi Li
    Donna Spiegelman
    [J]. Lifetime Data Analysis, 2016, 22 : 1 - 16
  • [2] Cox regression with covariate measurement error
    Hu, CC
    Lin, DY
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (04) : 637 - 655
  • [3] Spatial Regression with Covariate Measurement Error: A Semiparametric Approach
    Huque, Md Hamidul
    Bondell, Howard D.
    Carroll, Raymond J.
    Ryan, Louise M.
    [J]. BIOMETRICS, 2016, 72 (03) : 678 - 686
  • [4] Semiparametric analysis of competing risks data with covariate measurement error
    Jayanagasri, Akurathi
    Anjana, S.
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [5] ESTIMATION OF THE HAZARD FUNCTION IN A SEMIPARAMETRIC MODEL WITH COVARIATE MEASUREMENT ERROR
    Martin-Magniette, Marie-Laure
    Taupin, Marie-Luce
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2009, 13 : 87 - 114
  • [6] Covariate measurement error in the Cox model: A simulation study
    Liu, K
    Stone, RA
    Mazumdar, S
    Houck, PR
    Reynolds, CF
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2004, 33 (04) : 1077 - 1093
  • [7] A new adjusted Bayesian method in Cox regression model with covariate subject to measurement error
    Isik, Hatice
    Karasoy, Duru
    Karabey, Ugur
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (05): : 1367 - 1378
  • [8] Semiparametric Analysis of Linear Transformation Models with Covariate Measurement Errors
    Sinha, Samiran
    Ma, Yanyuan
    [J]. BIOMETRICS, 2014, 70 (01) : 21 - 32
  • [9] Nonparametric correction for covariate measurement error in a stratified Cox model
    Gorfine, M
    Hsu, L
    Prentice, RL
    [J]. BIOSTATISTICS, 2004, 5 (01) : 75 - 87
  • [10] A semiparametric estimation of copula models based on the method of moments
    Brahimi, Brahim
    Necir, Abdelhakim
    [J]. STATISTICAL METHODOLOGY, 2012, 9 (04) : 467 - 477