Embedding Heterostructured α-MnS/MnO Nanoparticles in S-Doped Carbonaceous Porous Framework as High-Performance Anode for Lithium-Ion Batteries

被引:25
|
作者
Ma, Yuan [1 ,2 ]
Ma, Yanjiao [1 ,2 ]
Diemant, Thomas [3 ]
Cao, Kecheng [4 ]
Kaiser, Ute [4 ]
Behm, R. Juergen [1 ,3 ]
Varzi, Alberto [1 ,2 ]
Passerini, Stefano [1 ,2 ]
机构
[1] Helmholtz Inst Ulm HIU Electrochem Energy Storage, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol KIT, POB 3640, D-76021 Karlsruhe, Germany
[3] Ulm Univ, Inst Surface Chem & Catalysis, Albert Einstein Allee 47, D-89081 Ulm, Germany
[4] Ulm Univ, Grp Electron Microscopy Mat Sci, Cent Facil Electron Microscopy, Albert Einstein Allee 11, D-89081 Ulm, Germany
关键词
heterostructure; in situ XRD/lithium storage mechanism; lithium-ion batteries; S-doped carbonaceous frameworks; α-MnS/MnO nanoparticles;
D O I
10.1002/celc.202100110
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, the synthesis of alpha-MnS/MnO/S-doped C micro-rod composites via a simple sulfidation process is demonstrated, starting from a Mn-based metal-organic framework. The resulting heterostructured alpha-MnS/MnO nanoparticles (8 +/- 2 nm) are uniformly embedded into the S-doped carbonaceous porous framework with hierarchical micro-/meso-porosity. The combination of structural and compositional characteristics results in the promising electrochemical performance of the as-obtained composites as anode materials for lithium-ion batteries, coupled with high reversible capacity (940 mAh g(-1) at 0.1 A g(-1)), excellent rate capability as well as long cycling lifespan at high rate of 2.0 A g(-1) for 2000 cycles with the eventual capacity of similar to 300 mAh g(-1). Importantly, in situ X-ray diffraction studies clearly reveal mechanistic details of the lithium storage mechanism, involving multistep conversion processes upon initial lithiation.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 50 条
  • [1] Effective carbon constraint of MnS nanoparticles as high-performance anode of lithium-ion batteries
    Camacho, Ramon A. Paredes
    Wu, Ai-Min
    Jin, Xiao-Zhe
    Dong, Xu-Feng
    Li, Xiao-Na
    Huang, Hao
    JOURNAL OF POWER SOURCES, 2019, 437
  • [2] Embedding silicon in biomass-derived porous carbon framework as high-performance anode of lithium-ion batteries
    He, Wei
    Luo, Hang
    Jing, Peng
    Wang, Hongmei
    Xu, Changhaoyue
    Wu, Hao
    Wang, Qian
    Zhang, Yun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918
  • [3] Embedding silicon in biomass-derived porous carbon framework as high-performance anode of lithium-ion batteries
    He W.
    Luo H.
    Jing P.
    Wang H.
    Xu C.
    Wu H.
    Wang Q.
    Zhang Y.
    Journal of Alloys and Compounds, 2022, 918
  • [4] Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
    Qin, Yanliang
    Wang, Bowen
    Jiang, Sipeng
    Jiang, Qingsong
    Huang, Chenghao
    Chen, Hai Chao
    IONICS, 2020, 26 (07) : 3315 - 3323
  • [5] Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
    Yanliang Qin
    Bowen Wang
    Sipeng Jiang
    Qingsong Jiang
    Chenghao Huang
    Hai Chao Chen
    Ionics, 2020, 26 : 3315 - 3323
  • [6] Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries
    Hao-Ran Wang
    Wen-Jun Cai
    Yong-Gang Yang
    Yi Li
    Journal of Nanoparticle Research, 2019, 21
  • [7] Intercalation of CoO in S-Doped Graphite as High-Performance Anodes for Lithium-Ion Batteries
    Ma, Xinlong
    Song, Xinyu
    Tang, Yushu
    Qi, Chuanlei
    Ning, Guoqing
    Gao, Jinsen
    Li, Yongfeng
    ENERGY TECHNOLOGY, 2017, 5 (12) : 2244 - 2252
  • [8] Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries
    Wang, Hao-Ran
    Cai, Wen-Jun
    Yang, Yong-Gang
    Li, Yi
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (03)
  • [9] Embedding Silicon in Pinecone-Derived Porous Carbon as a High-Performance Anode for Lithium-Ion Batteries
    Xu, Changhaoyue
    Wang, Boya
    Luo, Hang
    Jing, Peng
    Zhang, Xuemei
    Wang, Qian
    Zhang, Yun
    Wu, Hao
    CHEMELECTROCHEM, 2020, 7 (13): : 2889 - 2895
  • [10] Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries
    Wu, Lili
    Yang, Juan
    Zhou, Xiangyang
    Zhang, Manfang
    Ren, Yongpeng
    Nie, Yang
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (29) : 11381 - 11387