The mechanics of state-dependent neural correlations

被引:155
|
作者
Doiron, Brent [1 ,2 ]
Litwin-Kumar, Ashok [1 ,2 ,3 ]
Rosenbaum, Robert [1 ,2 ,4 ,5 ]
Ocker, Gabriel K. [1 ,2 ,6 ]
Josic, Kresimir [7 ,8 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Ctr Neural Basis Cognit, Pittsburgh, PA USA
[3] Columbia Univ, Ctr Theoret Neurosci, New York, NY USA
[4] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[5] Univ Notre Dame, Interdisciplinary Ctr Network Sci & Applicat, Notre Dame, IN 46556 USA
[6] Allen Inst Brain Sci, Seattle, WA USA
[7] Univ Houston, Dept Math, Houston, TX 77204 USA
[8] Univ Houston, Dept Biol & Biochem, Houston, TX USA
基金
美国国家科学基金会;
关键词
PRIMARY VISUAL-CORTEX; TERM SYNAPTIC DEPRESSION; MEMBRANE-POTENTIAL SYNCHRONY; NOISE CORRELATIONS; CORTICAL CIRCUITS; AREA MT; INTERNEURONAL CORRELATIONS; ORIENTATION SELECTIVITY; NEURONAL CORRELATIONS; SOMATOSENSORY CORTEX;
D O I
10.1038/nn.4242
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Simultaneous recordings from large neural populations are becoming increasingly common. An important feature of population activity is the trial-to-trial correlated fluctuation of spike train outputs from recorded neuron pairs. Similar to the firing rate of single neurons, correlated activity can be modulated by a number of factors, from changes in arousal and attentional state to learning and task engagement. However, the physiological mechanisms that underlie these changes are not fully understood. We review recent theoretical results that identify three separate mechanisms that modulate spike train correlations: changes in input correlations, internal fluctuations and the transfer function of single neurons. We first examine these mechanisms in feedforward pathways and then show how the same approach can explain the modulation of correlations in recurrent networks. Such mechanistic constraints on the modulation of population activity will be important in statistical analyses of high-dimensional neural data.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [1] The mechanics of state-dependent neural correlations
    Brent Doiron
    Ashok Litwin-Kumar
    Robert Rosenbaum
    Gabriel K Ocker
    Krešimir Josić
    Nature Neuroscience, 2016, 19 : 383 - 393
  • [2] State-dependent pair correlations in nuclei
    Moliner, I
    Guardiola, R
    Navarro, J
    Bishop, RF
    Walet, NR
    Puente, A
    CONDENSED MATTER THEORIES, VOL 13, 1998, 13 : 55 - 65
  • [3] ON STATE-DEPENDENT IMPLICATION IN QUANTUM-MECHANICS
    HERBUT, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (22): : 7503 - 7518
  • [4] State-dependent correlations of biochemical variables in plants
    Nemeth, Zsolt Istvan
    Sardi, Eva
    Stefanovits-Banyai, Eva
    JOURNAL OF CHEMOMETRICS, 2009, 23 (3-4) : 197 - 210
  • [5] NEURAL NETWORK WITH STATE-DEPENDENT SYNAPSES
    MATUS, IJ
    PEREZ, P
    PHYSICAL REVIEW A, 1990, 41 (12): : 7013 - 7019
  • [6] NEURAL THRESHOLDS AND STATE-DEPENDENT LEARNING
    PUSAKULICH, RL
    NIELSON, HC
    EXPERIMENTAL NEUROLOGY, 1972, 34 (01) : 33 - +
  • [7] TICC2 state-dependent correlations in nuclei
    Moliner, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (28): : 5203 - 5207
  • [8] FHNC CALCULATIONS OF MOMENTUM DISTRIBUTION FOR STATE-DEPENDENT CORRELATIONS
    FABROCINI, A
    POLLS, A
    LETTERE AL NUOVO CIMENTO, 1980, 29 (14): : 449 - 454
  • [9] Central Jastrow and linear state-dependent correlations in nuclei
    Buendía, E
    Gálvez, FJ
    Praena, J
    Sarsa, A
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2000, 26 (12) : 1795 - 1807
  • [10] State-dependent routing with a neural networks algorithm
    Beijing Univ of Posts and, Telecommunications, Beijing, China
    Beijing Youdian Xueyuan Xuebao, 2 (16-20):