THE REPRESENTATION OF HOLOMORPHIC FUNCTIONS ON THE QUASI-CIRCULAR DOMAIN AND THE BERGMAN KERNEL FUNCTION ON THE SYMMETRIZED BALL

被引:0
|
作者
Zhong, Chengchen [1 ]
Pan, Lishuang [2 ]
Wang, An [3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Shijiazhuang Univ, Sci Coll, Shijiazhuang 050035, Hebei, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2022年 / 48卷 / 01期
基金
中国国家自然科学基金;
关键词
Quasi-circular domain; orthonormal basis; Bergman kernel function; symmetrized ball; AUTOMORPHISMS; GEOMETRY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the relationship between the circular domain and quasi-circular domain by using standard mapping and standard inverse mapping in order to give the quasi-homogeneous representation of holomorphic functions on quasi-circular domain. By using the above result, we obtain the form of orthonormal basis on quasi-circular domain. Especially, we give the Bergman kernel function on symmetrized ball.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 31 条