Lines of principal curvature on canal surfaces in R3

被引:12
|
作者
Garcia, Ronaldo
Llibre, Jaume
Sotomayor, Jorge
机构
[1] Univ Fed Goias, Inst Matemat & Estatist, BR-74001970 Goiania, Go, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[3] Univ Sao Paulo, Inst Matemat & Estatist, BR-05508090 Sao Paulo, Brazil
来源
关键词
Riccati equation; principal curvature lines; canal surfaces;
D O I
10.1590/S0001-37652006000300002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper are determined the principal curvatures and principal curvature lines on canal surfaces which are the envelopes of families of spheres with variable radius and centers moving along a closed regular curve in R-3. By means of a connection of the differential equations for these curvature lines and real Riccati equations, it is established that canal surfaces have at most two isolated periodic principal lines. Examples of canal surfaces with two simple and one double periodic principal lines are given.
引用
收藏
页码:405 / 415
页数:11
相关论文
共 50 条
  • [1] Lines of mean curvature on surfaces immersed in R3
    Garcia R.
    Sotomayor J.
    [J]. Qualitative Theory of Dynamical Systems, 2004, 4 (2) : 263 - 309
  • [2] Harmonic mean curvature lines on surfaces immersed in R3
    Garcia, R
    Sotomayor, J
    [J]. BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2003, 34 (02): : 303 - 331
  • [3] ON THE CURVATURE OF KNOTTED SURFACES IN R3
    KUIPER, NH
    MEEKS, W
    [J]. ASTERISQUE, 1983, (107-) : 215 - 217
  • [4] Tori embedded in R3 with dense principal lines
    Garcia, R.
    Sotomayor, J.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (04): : 348 - 354
  • [5] ISOMETRIC EMBEDDINGS OF SURFACES WITH NONNEGATIVE CURVATURE IN R3
    IAIA, JA
    [J]. DUKE MATHEMATICAL JOURNAL, 1992, 67 (02) : 423 - 459
  • [6] Surfaces of prescribed linear Weingarten curvature in R3
    Bueno, Antonio
    Ortiz, Irene
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (04) : 1347 - 1370
  • [7] Surfaces of constant curvature in R3 with isolated singularities
    Galvez, Jose A.
    Hauswirth, Laurent
    Mira, Pablo
    [J]. ADVANCES IN MATHEMATICS, 2013, 241 : 103 - 126
  • [8] A BOUND FOR TOTAL ABSOLUTE CURVATURE OF SURFACES IN R3
    FORNARI, S
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1981, 53 (02): : 255 - 256
  • [9] Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed in R3
    Garcia, R
    Sotomayor, J
    [J]. PUBLICACIONS MATEMATIQUES, 2001, 45 (02) : 431 - 466
  • [10] Minimal surfaces in R3 with one end¶and bounded curvature
    Lucio Rodríguez
    Harold Rosenberg
    [J]. manuscripta mathematica, 1998, 96 : 3 - 7