Regularity estimates for the parabolic p(x, t)-Laplacian br equation in Besov spaces

被引:0
|
作者
Yao, Fengping [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Besov; Regularity; Parabolic; p(x; t)-Laplacian; Weak solutions; Divergence; CALDERN-ZYGMUND THEORY; HIGHER INTEGRABILITY; SYSTEMS;
D O I
10.1016/j.nonrwa.2022.103645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to develop the local regularity estimates in Besov spaces for weak solutions to the following parabolic p(x, t)-Laplacian equation in divergence form u(t) -div (|(sic)(u)|p((x,t)-2)a(x, t)(sic)u) = div F under some proper assumptions on the functions p(x, t), a(x, t) and F(x, t). Moreover, we want to point out that our results improve the existed results for this kind of problems. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条