L-Glutamate (L-Glu) is present in most excitatory synapses of the mammalian brain, acting on several receptor subtypes. Height different genes encoding metabotropic glutamate receptors (mGluRs) subtypes have been described (mGluR1-8), having a distinct distribution in the brain. In the present study, the distribution of mGluR1, 3, 4, 5 and 7 mRNAs was determined in 20 thalamic nuclei of adult rats by performing in situ hybridisation with subtype-specific S-35-labelled oligonucleotide probes. High expression of mGluR1 mRNA mainly occurred in midline nuclei such as the centromedial/centrolateral (CM/CL) nuclei, parafascicular and submedius nuclei, and in the ventroposteromedial (VPM) and posterior (Po) nuclei. In contrast, mGluR5 mRNA was more uniformly distributed at weak to moderate levels, except in the reuniens nucleus where a strong signal was detected. The mGluR3 mRNA was highly expressed in the reticular thalamic nucleus and almost not detectable in any other thalamic region. Additionally, mGluR3 mRNA was found not only in neurones but also in putative glial cells. The mGluR4 mRNA was abundant in most thalamic nuclei, with prominent expression in the CM/CL, Po and ventrobasal complex (VPM and ventroposterolateral, VPL). Finally, mGluR7 transcripts were found evenly distributed throughout the thalamus at moderate levels, the highest signal being detected in the paraventricular thalamic nucleus, VPM, VPL and Po. This differential distribution of mGluR subtypes in the rat thalamus may contribute to the heterogeneity of glutamate effects on thalamic neurones. The mGluR1, mGluR4 and mGluR7 receptors may be involved in the processing of somatosensory information because they an expressed in nuclei that receive direct sensory input. (C) 2000 Elsevier Science B.V. All rights reserved.