Waveguide Bragg grating as a 1D photonic bandgap structure

被引:0
|
作者
Ctyroky, J [1 ]
机构
[1] Acad Sci Czech Republ, Inst Radio Engn & Elect, CR-18251 Prague 8, Czech Republic
来源
关键词
photonic bandgap structures; photonic crystals; waveguide Bragg gratings; theory of optical waveguides;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In most studies of 1D and 2D photonic crystals (PC) and photonic bandgap structures (PBG), the structures are considered to be invariant with respect to the 'remaining' dimension(s). If the PBG structure is to be incorporated into an optical waveguide, the inevitable refractive-index inhomogeneity used to create the waveguiding effect may detrimentally affect the behaviour of the PBG. In this paper, such an influence is demonstrated by numerical modelling of a first-order waveguide Bragg grating as a 1D PBG device. A condition for perfect spectral behaviour of a waveguide PBG device is formulated and its validity is verified by numerical calculation of modal reflection and transmission spectra.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 50 条
  • [1] Second-order Bragg waveguide grating as a 1D photonic band gap structure in SOI waveguide
    Dong, P
    Kirk, AG
    [J]. APPLICATIONS OF PHOTONIC TECHNOLOGY, CLOSING THE GAP BETWEEN THEORY, DEVELOPMENT, AND APPLICATION, PT 1 AND 2, 2004, 5577 : 589 - 597
  • [2] Bragg waveguide grating as a 1d photonic band gap structure: COST 268 modelling task
    J. Čtyroký
    S. Helfert
    R. Pregla
    P. Bienstman
    R. Baets
    R. De Ridder
    R. Stoffer
    G. Klaasse
    J. PetráČek
    P. Lalanne
    J. P. Hugonin
    R. M. De LaRue
    [J]. Optical and Quantum Electronics, 2002, 34 (5-6) : 455 - 470
  • [3] Bragg waveguide grating as a 1D photonic band gap structure:: COST 268 modelling task
    Ctyroky, J
    Helfert, S
    Pregla, R
    Bienstman, P
    Baets, R
    De Ridder, R
    Stoffer, R
    Klaasse, G
    Petrácek, J
    Lalanne, P
    Hugonin, JP
    De La Rue, RM
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2002, 34 (05) : 455 - 470
  • [4] Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task
    J. Čtyroký
    S. Helfert
    R. Pregla
    P. Bienstman
    R. Baets
    R. De Ridder
    R. Stoffer
    G. Klaasse
    J. Petráček
    P. Lalanne
    J.-P. Hugonin
    R.M. De La Rue
    [J]. Optical and Quantum Electronics, 2002, 34 (5) : 455 - 470
  • [5] Light dynamics around an exceptional point in a 1D photonic bandgap waveguide
    Dey, Sibnath
    Roy, Arpan
    Ghosh, Somnath
    [J]. PHYSICA SCRIPTA, 2022, 97 (08)
  • [6] Grating solitons near the photonic bandgap of a fiber Bragg grating
    Senthilnathan, K.
    Babu, P. Ramesh
    Porsezian, K.
    Santhanam, V.
    Gnanasekaran, S.
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (02) : 523 - 531
  • [7] Transverse localization of light in 1D disordered waveguide lattices in the presence of a photonic bandgap
    Ghosh, Somnath
    Pal, B. P.
    Varshney, R. K.
    Ahmad, H.
    [J]. LASER PHYSICS, 2014, 24 (04)
  • [8] Extrusion method for fabrication of hollow waveguides with 1D photonic bandgap structure
    Gibson, DJ
    Harrington, JA
    [J]. OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS II, 2002, 4616 : 91 - 96
  • [9] Comparative Analysis of Photonic Bandgap and Transmittance in 1D Photonic Crystals
    Mishra, Upendra Kumar
    Chandel, Vishal Singh
    Vibhu, Isht
    Singh, Prabal Pratap
    [J]. 2018 5TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (UPCON), 2018, : 845 - 849
  • [10] Bandgap extension of disordered 1D ternary photonic crystals
    Zhang, Yuping
    Yao, Jianquan
    Zhang, Huiyun
    Zheng, Yi
    Wang, Peng
    [J]. Guangzi Xuebao/Acta Photonica Sinica, 2005, 34 (07): : 1094 - 1098