共 20 条
Non-skew-symmetric classical r-matrices, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems
被引:29
|作者:
Skrypnyk, T.
[1
,2
]
机构:
[1] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[2] Bogoliubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
关键词:
BCS theory;
fermion systems;
fermions;
matrix algebra;
quantum statistical mechanics;
QUASIGRADED LIE-ALGEBRAS;
HAMILTONIAN STRUCTURES;
METALLIC GRAINS;
MAGNETIC-FIELD;
LAX EQUATIONS;
SPIN CHAINS;
MODELS;
D O I:
10.1063/1.3072912
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We construct quantum integrable systems associated with non-skew-symmetric gl(2)-valued classical r-matrices. We find a new explicit multiparametric family of such the non-skew-symmetric classical r-matrices. We consider two classes of examples of the corresponding integrable systems, namely generalized Gaudin systems with and without an external magnetic field. In the case of arbitrary r-matrices diagonal in a standard gl(2)-basis, we calculate the spectrum of the corresponding quantum integrable systems using the algebraic Bethe ansatz. We apply these results to a construction of integrable fermionic models and obtain a wide class of integrable Bardeen-Cooper-Schrieffer (BCS)-type fermionic Hamiltonians containing the pairing and electrostatic interaction terms. We also consider special cases when the corresponding integrable Hamiltonians contain only pairing interaction term and are exact analogs of the "reduced BCS Hamiltonian" of Richardson.
引用
收藏
页数:28
相关论文