A hyper-box approach using relational databases for large scale machine learning

被引:0
|
作者
Papadakis, Stelios E. [1 ]
Stykas, Vangelis A.
Mastorakis, George [1 ]
Mavromoustakis, Constandinos X. [2 ]
机构
[1] Technol Educ Inst Crete, Dept Business Adm, Ag Nikolaos, Crete, Greece
[2] Univ Nicosia, Dept Comp Sci, Nicosia, Cyprus
关键词
Big Data; Machine Learning; Hyper-box; Support Vector Machines; Higgs;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper We follow a simple approach which allows the implementation of machine learning (ML for short) techniques to large data sets. More specifically, we study the case of on-demand dynamic creation of a local model in the neighborhood of a target datum instead of creating a global one on the whole training data set. This approach exploits the advanced data structures and algorithms, embedded in modern relational databases, to identify the neighborhood of a target datum, rapidly. Preliminary experimental results from a large scale classification problem (HIGGS dataset) show that the typical machine learning techniques are applicable to large data sets through this approach, under particular conditions. We highlight some restrictions of the method and some issues arising by implementing it.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 50 条
  • [1] Image Similarity Search in Large Databases Using a Fast Machine Learning Approach
    Sinjur, Smiljan
    Zazula, Damjan
    [J]. NEW DIRECTIONS IN INTELLIGENT INTERACTIVE MULTIMEDIA, 2008, 142 : 85 - 93
  • [2] A DATABASE MACHINE FOR VERY LARGE RELATIONAL DATABASES
    QADAH, GZ
    IRANI, KB
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1985, 34 (11) : 1015 - 1025
  • [3] LEARNING IN RELATIONAL DATABASES - A ROUGH SET APPROACH
    HU, XH
    CERCONE, N
    [J]. COMPUTATIONAL INTELLIGENCE, 1995, 11 (02) : 323 - 338
  • [4] A hybrid approach to machine learning annotation of large galaxy image databases
    Kuminski, E.
    Shamir, L.
    [J]. ASTRONOMY AND COMPUTING, 2018, 25 : 257 - 269
  • [5] Extracting OWL Ontologies from Relational Databases Using Data Analysis and Machine Learning
    Al Khuzayem, Lama
    Mcbrien, Peter
    [J]. DATABASES AND INFORMATION SYSTEMS IX, 2016, 291 : 43 - 56
  • [6] Humanization of antibodies using a machine learning approach on large-scale repertoire data
    Marks, Claire
    Hummer, Alissa M.
    Chin, Mark
    Deane, Charlotte M.
    [J]. BIOINFORMATICS, 2021, 37 (22) : 4041 - 4047
  • [7] Reasoning with large ontologies stored in relational databases: The OntoMinD approach
    Al-Jadir, Lina
    Parent, Christine
    Spaccapietra, Stefano
    [J]. DATA & KNOWLEDGE ENGINEERING, 2010, 69 (11) : 1158 - 1180
  • [8] Machine learning techniques to examine large patient databases
    Meyfroidt, Geert
    Guiza, Fabian
    Ramon, Jan
    Bruynooghe, Maurice
    [J]. BEST PRACTICE & RESEARCH-CLINICAL ANAESTHESIOLOGY, 2009, 23 (01) : 127 - 143
  • [9] Using machine learning to parametrize large scale tumor simulations
    Herold, Julian M.
    Behle, Eric
    Schug, Alexander H.
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (03) : 413A - 413A
  • [10] Gene prediction in metagenomic fragments: A large scale machine learning approach
    Katharina J Hoff
    Maike Tech
    Thomas Lingner
    Rolf Daniel
    Burkhard Morgenstern
    Peter Meinicke
    [J]. BMC Bioinformatics, 9