A compactness theorem in Finsler geometry

被引:3
|
作者
Anastasiei, Mihai [1 ,2 ]
Peter, Ioan Radu [3 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi, Romania
[2] Acad Romana, Math Inst O Mayer, Iasi, Romania
[3] Tech Univ Cluj Napoca, Dept Math, RO-400114 Cluj Napoca, Romania
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2014年 / 84卷 / 1-2期
关键词
Finsler manifolds; Morse theory; minimal submanifolds; SUBMANIFOLDS;
D O I
10.5486/PMD.2014.5834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, F) be a complete Finsler manifold and P be a minimal and compact submanifold of M. The k-Ricci curvature Ric(k) (x), x is an element of M is a differential invariant that interpolates between the flag curvature and the Ricci scalar. We prove that if the k-Ricci curvature satisfies the condition integral(infinity)(0) Ric(k) (t) > 0 along any geodesic gamma : [0, infinity) -> M, t -> gamma(t) emanating orthogonally from P or f(-infinity)(0) Ric(k)(t) > 0 along any geodesic gamma : (-infinity, 0] -> M, t -> gamma(t) arriving orthogonally to P, then M is compact.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条