Cluster Size-Constrained Fuzzy C-Means with Density Center Searching

被引:1
|
作者
Li, Jiarui [1 ]
Horiguchi, Yukio [2 ]
Sawaragi, Tetsuo [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Mech Engn & Sci, Kyoto, Japan
[2] Kansai Univ, Fac Informat, Osaka, Japan
关键词
Fuzzy C-means; Clustering; Cluster size insensitivity; IMAGE SEGMENTATION; FCM;
D O I
10.5391/IJFIS.2020.20.4.346
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fuzzy C-means (FCM) has a definite limitation when partitioning a dataset into clusters with varying sizes and densities because it ignores the scale difference in different dimensions of input data objects. To alleviate this cluster size insensitivity, we propose a wrapper algorithm for FCM by introducing cluster size as a priori information and limiting the search direction on the basis of density benchmarks (CSCD-FCM). This method is divided into two stages. The first stage adjusts the position of each cluster while maintaining its shape, and the second stage changes the shape of each cluster while maintaining its center. Both steps modify fuzzy partitions generated by FCM-like soft clustering methods by optimizing a "size-constrained" objective function. Numerical and practical experiments with unbalanced cluster size settings demonstrate the effectiveness of this method for extracting actual cluster structures, as well as achieving the desired cluster populations.
引用
收藏
页码:346 / 357
页数:12
相关论文
共 50 条
  • [1] A Generalization of Fuzzy c-Means with Variables Controlling Cluster Size
    Kanzawa, Yuchi
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2023, 2023, 13890 : 226 - 237
  • [2] A Study on Cluster Size Sensitivity of Fuzzy c-Means Algorithm Variants
    Szilagyi, Laszlo
    Szilagyi, Sandor M.
    Enachescu, Calin
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 470 - 478
  • [3] Multivariate image segmentation with cluster size insensitive fuzzy C-means
    Noordam, JC
    van den Broek, WHAM
    Buydens, LMC
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 64 (01) : 65 - 78
  • [4] Incremental kernel fuzzy c-means with optimizing cluster center initialization and delivery
    Jiao, Runhai
    Liu, Shaolong
    Wen, Wu
    Lin, Biying
    KYBERNETES, 2016, 45 (08) : 1273 - 1291
  • [5] ON CLUSTER VALIDITY FOR THE FUZZY C-MEANS MODEL
    PAL, NR
    BEZDEK, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (03) : 370 - 379
  • [6] Parallel fuzzy c-means cluster analysis
    Modenesi, Marta V.
    Costa, Myrian C. A.
    Evsukoff, Alexandre G.
    Ebecken, Nelson F. F.
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2006, 2007, 4395 : 52 - +
  • [7] Fuzzy C-Means Clustering Algorithm for Image Segmentation Insensitive to Cluster Size
    Zhao Zhanmin
    Zhu Zhanlong
    Liu Yongjun
    Liu Ming
    Zheng Yibo
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (02)
  • [8] Fuzzifier Selection in Fuzzy C-Means from Cluster Size Distribution Perspective
    Zhou, Kaile
    Yang, Shanlin
    INFORMATICA, 2019, 30 (03) : 613 - 628
  • [9] An Adaptive Cluster Validity Index for the Fuzzy C-means
    Chen Duo
    Li Xue
    Cui Du-Wu
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (02): : 146 - 156
  • [10] Density-Weighted Fuzzy c-Means Clustering
    Hathaway, Richard J.
    Hu, Yingkang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2009, 17 (01) : 243 - 252