Spline multiresolution and wavelet-like decompositions

被引:1
|
作者
Hamm, Carsten [1 ]
Handeck, Joerg [1 ]
Sauer, Tomas [2 ]
机构
[1] Siemens AG, Drive Technol Div, Ind Sect, D-91056 Erlangen, Germany
[2] Univ Passau, Lehrstuhl Math Schwerpunkt Digitale Bildverarbeit, D-94032 Passau, Germany
关键词
Spline curve; Multiresolution; Edge detection; DESIGN;
D O I
10.1016/j.cagd.2014.05.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Splines are useful tools to represent, modify and analyze curves and they play an important role in various practical applications. We present a multiresolution approach to spline curves with arbitrary knots that provides good feature detection and localization properties for non-equally distributed geometric data. In addition, we show how equidistributed data and knot sequences can be efficiently handled using signal processing techniques. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 50 条
  • [1] Generating functions and wavelet-like decompositions
    Nersessian, A
    [J]. TOPICS IN ANALYSIS AND ITS APPLICATIONS, 2004, 147 : 443 - 451
  • [2] Constructive realizable multiresolution wavelet-like systems based on multi-windows spline-type spaces
    Onchis, Darian M.
    Zappala, Simone
    [J]. 2017 19TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2017), 2017, : 99 - 104
  • [3] Nested spline–wavelet decompositions
    Yu. K. Dem’yanovich
    I. D. Miroshnichenko
    [J]. Journal of Mathematical Sciences, 2012, 184 (3) : 282 - 294
  • [4] SPLINE WAVELET MULTIRESOLUTION OF SCATTER DATA
    Ion, Stelian
    Marinescu, Dorin
    Ion, Anca Veronica
    Cruceanu, Stefan-Gicu
    Iordache, Virgil
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (04): : 311 - 318
  • [5] Spline-wavelet decompositions on manifolds
    Dem'yanovich Yu.K.
    [J]. Journal of Mathematical Sciences, 2008, 150 (1) : 1787 - 1798
  • [6] Interference in spline-wavelet decompositions
    Dem'yanovich Y.K.
    [J]. Journal of Mathematical Sciences, 2012, 186 (2) : 234 - 246
  • [7] Smoothness of spline spaces and wavelet decompositions
    Dem'yanovich, YK
    [J]. DOKLADY MATHEMATICS, 2005, 71 (02) : 220 - 223
  • [8] CONTINUOUS WAVELET DECOMPOSITIONS, MULTIRESOLUTION, AND CONTRAST ANALYSIS
    DUVALDESTIN, M
    MUSCHIETTI, MA
    TORRESANI, B
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (03) : 739 - 755
  • [9] Discretization and Perturbation of Wavelet-like Families
    Wilson, Michael
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (01): : 69 - 94
  • [10] Notes on wavelet-like basis matrices
    Lin, FR
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (6-7) : 761 - 769