Learning a Hidden Markov Model-Based Hyper-heuristic

被引:1
|
作者
Van Onsem, Willem [1 ]
Demoen, Bart [1 ]
De Causmaecker, Patrick [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
关键词
D O I
10.1007/978-3-319-19084-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A simple model shows how a reasonable update scheme for the probability vector by which a hyper-heuristic chooses the next heuristic leads to neglecting useful mutation heuristics. Empirical evidence supports this on the MAXSAT, TRAVELINGSALESMAN, PERMUTATION-FLOWSHOP and VEHICLEROUTINGPROBLEM problems. A new approach to hyper-heuristics is proposed that addresses this problem by modeling and learning hyper-heuristics by means of a hidden Markov Model. Experiments show that this is a feasible and promising approach.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [1] A Sequence-based Selection Hyper-heuristic Utilising a Hidden Markov Model
    Kheiri, Ahmed
    Keedwell, Ed
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 417 - 424
  • [2] A hyper-heuristic approach based upon a hidden Markov model for the multi-stage nurse rostering problem q
    Kheiri, Ahmed
    Gretsista, Angeliki
    Keedwell, Ed
    Lulli, Guglielmo
    Epitropakis, Michael G.
    Burke, Edmund K.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2021, 130
  • [3] Multi-robot task allocation for optional tasks with hidden workload: Using a model-based hyper-heuristic strategy
    Yan, Fuhan
    Di, Kai
    Ge, Bin
    Liu, Luoliang
    Wang, Zeren
    Fan, Wenjian
    Hu, Didi
    [J]. Engineering Applications of Artificial Intelligence, 2024, 138
  • [4] A Learning Automata-Based Multiobjective Hyper-Heuristic
    Li, Wenwen
    Ozcan, Ender
    John, Robert
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (01) : 59 - 73
  • [5] Automatic design of hyper-heuristic based on reinforcement learning
    Choong, Shin Siang
    Wong, Li-Pei
    Lim, Chee Peng
    [J]. INFORMATION SCIENCES, 2018, 436 : 89 - 107
  • [6] Hyper-heuristic for CVRP with reinforcement learning
    Zhang J.
    Feng Q.
    Zhao Y.
    Liu J.
    Leng L.
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2020, 26 (04): : 1118 - 1129
  • [7] Markov Chain Hyper-heuristic (MCHH): an Online Selective Hyper-heuristic for Multi-objective Continuous Problems
    McClymont, Kent
    Keedwell, Ed C.
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 2003 - 2010
  • [8] An analysis of heuristic subsequences for offline hyper-heuristic learning
    W. B. Yates
    E. C. Keedwell
    [J]. Journal of Heuristics, 2019, 25 : 399 - 430
  • [9] Analysing Heuristic Subsequences for Offline Hyper-heuristic Learning
    Yates, William B.
    Keedwell, Edward C.
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 37 - 38
  • [10] An analysis of heuristic subsequences for offline hyper-heuristic learning
    Yates, W. B.
    Keedwell, E. C.
    [J]. JOURNAL OF HEURISTICS, 2019, 25 (03) : 399 - 430