Finite volume method for 2D elastic wave propagation

被引:10
|
作者
Tadi, M [1 ]
机构
[1] Univ Colorado, Dept Engn Mech, Denver, CO 80217 USA
关键词
D O I
10.1785/012003138
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article is concerned with a finite volume formulation of elastic wave propagation. It considers a homogeneous domain as well as a domain composed of two homogeneous elastic solids in perfect contact. The interface is parallel to the free surface. In the case of a homogeneous domain, it investigates the usefulness of the method and compares the results to a number of existing methods. In the case of a two-layer domain, it compares the results to an approximate calculation.
引用
收藏
页码:1500 / 1509
页数:10
相关论文
共 50 条
  • [1] A 2D wavelet-based spectral finite element method for elastic wave propagation
    Pahlavan, L.
    Kassapoglou, C.
    Suiker, A. S. J.
    Gurdal, Z.
    PHILOSOPHICAL MAGAZINE, 2012, 92 (28-30) : 3699 - 3722
  • [2] Dispersion Analysis of Multiscale Wavelet Finite Element for 2D Elastic Wave Propagation
    Shen, Wei
    Li, Dongsheng
    Ou, Jinping
    JOURNAL OF ENGINEERING MECHANICS, 2020, 146 (04)
  • [3] An enhanced finite volume method to model 2D linear elastic structures
    Suliman, R.
    Oxtoby, O. F.
    Malan, A. G.
    Kok, S.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (7-8) : 2265 - 2279
  • [4] Multiscale Simulation of 2D Elastic Wave Propagation
    Zhang, Wensheng
    Zheng, Hui
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [5] A note on the application of the generalized finite difference method to seismic wave propagation in 2D
    Urena, Francisco
    Jose Benito, Juan
    Salete, Eduardo
    Gavete, Luis
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (12) : 3016 - 3025
  • [6] FINITE-DIFFERENCE ELASTIC-WAVE PROPAGATION IN 2D HETEROGENEOUS TRANSVERSELY ISOTROPIC MEDIA
    JUHLIN, C
    GEOPHYSICAL PROSPECTING, 1995, 43 (06) : 843 - 858
  • [7] On highly convergent 2D acoustic and elastic wave propagation models
    Barauskas, R
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (03): : 225 - 233
  • [8] An analytical benchmark for a 2D problem of elastic wave propagation in a solid
    Chiappa, A.
    Iakovlev, S.
    Marzani, A.
    Giorgetti, F.
    Groth, C.
    Porziani, S.
    Biancolini, M. E.
    ENGINEERING STRUCTURES, 2021, 229
  • [9] Wave propagation of 2D elastic metamaterial with rotating squares and hinges
    Li, Yingli
    Yan, Shiguang
    Li, Hao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 217
  • [10] Wave propagation in 2D magneto-elastic kagome lattices
    Schaeffer, Marshall D.
    Ruzzene, Massimo
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2014, 2014, 9064