Automatic detection of sleep stages using the EEG

被引:24
|
作者
Van Hese, P [1 ]
Philips, W [1 ]
De Koninck, J [1 ]
Van de Walle, R [1 ]
Lemahieu, I [1 ]
机构
[1] State Univ Ghent, IBITECH, MEDISIP, Elis Dept, B-9000 Ghent, Belgium
关键词
automatic sleep scoring; EEG analysis;
D O I
10.1109/IEMBS.2001.1020608
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We present a method for the detection of sleep stages using the EEG (electroencephalogram). The method consists of four steps: segmentation; parameter extraction; cluster analysis; and classification. The parameters we compared were the parameters of Hjorth, the harmonic parameters and the relative band energy. For cluster analysis we used a modified version of the K-means algorithm. It is shown that the investigated parameters are capable of extracting information from the EEG relevant for sleep stage scoring. Using the modified K-means algorithm it is possible to find 'similar' segments and hence automate the detection of sleep stages. However, extra information e.g., the ECG (electrocardiogram) or the EOG (electrooculogram) is probably necessary for a clear discrimination between the different sleep stages.
引用
收藏
页码:1944 / 1947
页数:4
相关论文
共 50 条
  • [1] Automatic detection of sleep stages in neonatal EEG using the structural time profiles
    Krajca, V.
    Petranek, S.
    Paul, K.
    Matousek, M.
    Mohylova, J.
    Lhotska, L.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6014 - 6016
  • [2] AUTOMATIC DETECTION AND CLASSIFICATION OF SLEEP STAGES BY MULTICHANNEL EEG SIGNAL MODELING
    Zhovna, Inna
    Shallom, Ilan D.
    2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-8, 2008, : 2665 - 2668
  • [3] Automatic Detection of the Wake and Stage 1 Sleep Stages Using the EEG Sub-Epoch Approach
    Malaekah, Emad
    Cvetkovic, Dean
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 6401 - 6404
  • [4] Automatic Sleep Onset Detection Using Single EEG Sensor
    Zhang, Zhuo
    Guan, Cuntai
    Chan, Ti Eu
    Yu, Juanhong
    Ng, Andrew Keong
    Zhang, Haihong
    Kwoh, Chee Keong
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 2265 - 2268
  • [5] Automatic classification of sleep stages using EEG signals and convolutional neural networks
    Masad, Ihssan S.
    Alqudah, Amin
    Qazan, Shoroq
    PLOS ONE, 2024, 19 (01):
  • [6] Automated detection of neonate EEG sleep stages
    Piryatinska, Alexandra
    Terdik, Gyorgy
    Woyczynski, Wojbor A.
    Loparo, Kenneth A.
    Scher, Mark S.
    Zlotnik, Anatoly
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 95 (01) : 31 - 46
  • [7] Detection of sleep stages in neonatal EEG records
    Krajca, V.
    Piorecka, V.
    Schaabova, H.
    Strobl, J.
    Piorecky, M.
    Lhotska, L.
    Paul, K.
    EMBEC & NBC 2017, 2018, 65 : 250 - 253
  • [8] Automatic Sleep Stage Detection using a Single Channel Frontal EEG
    Tautan, Alexandra-Maria
    Rossi, Alessandro C.
    de Francisco, Ruben
    Ionescu, Bogdan
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [9] Automatic detection of electroencephalogram (EEG) sleep discontinuity
    Jamasebi, R.
    Redline, S.
    Loparo, K.
    SLEEP, 2008, 31 : A348 - A348
  • [10] Detection of Sleep Apnea Based on the Analysis of Sleep Stages Data Using Single Channel EEG
    Gurrala, Vijayakumar
    Yarlagadda, Padmasai
    Koppireddi, Padmaraju
    TRAITEMENT DU SIGNAL, 2021, 38 (02) : 431 - 436