Viewing Visual Analytics as Model Building

被引:55
|
作者
Andrienko, N. [1 ,2 ]
Lammarsch, T.
Andrienko, G. [1 ,2 ]
Fuchs, G. [1 ]
Keim, D. [3 ]
Miksch, S. [4 ]
Rind, A. [5 ]
机构
[1] Fraunhofer Inst IAIS, St Augustin, Germany
[2] City Univ London, London, England
[3] Univ Konstanz, Constance, Germany
[4] Vienna Univ Technol, Vienna, Austria
[5] St Poelten Univ Appl Sci, Sankt Polten, Austria
基金
奥地利科学基金会;
关键词
visual analytics; visualization; VISUALIZATION; TIME; EXPLORATION; DESIGN; TASKS; SPACE; PROJECTION; FRAMEWORK; PATTERNS; TYPOLOGY;
D O I
10.1111/cgf.13324
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To complement the currently existing definitions and conceptual frameworks of visual analytics, which focus mainly on activities performed by analysts and types of techniques they use, we attempt to define the expected results of these activities. We argue that the main goal of doing visual analytics is to build a mental and/or formal model of a certain piece of reality reflected in data. The purpose of the model may be to understand, to forecast or to control this piece of reality. Based on this model-building perspective, we propose a detailed conceptual framework in which the visual analytics process is considered as a goal-oriented workflow producing a model as a result. We demonstrate how this framework can be used for performing an analytical survey of the visual analytics research field and identifying the directions and areas where further research is needed.
引用
收藏
页码:275 / 299
页数:25
相关论文
共 50 条
  • [1] Building and applying a human cognition model for visual analytics
    Green, Tera Marie
    Ribarsky, William
    Fisher, Brian
    [J]. INFORMATION VISUALIZATION, 2009, 8 (01) : 1 - 13
  • [2] Big Data and Visual Analytics for Building Performance Comparison
    Ioannidis, Dimosthenis
    Fotiadou, Angeliki
    Krinidis, Stelios
    Stavropoulos, George
    Tzovaras, Dimitrios
    Likothanassis, Spiridon
    [J]. Artificial Intelligence Applications and Innovations, 2015, 458 : 421 - 430
  • [3] Beyond Trust Building - Calibrating Trust in Visual Analytics
    Han, Wenkai
    Schulz, Hans-Jorg
    [J]. 2020 IEEE WORKSHOP ON TRUST AND EXPERTISE IN VISUAL ANALYTICS (TREX 2020), 2020, : 9 - 15
  • [4] Visual analytics: Building a vibrant and resilient national science
    Wong, Pak Chung
    Thomas, Jim
    [J]. INFORMATION VISUALIZATION, 2009, 8 (04) : 302 - 308
  • [5] Knowledge Generation Model for Visual Analytics
    Sacha, Dominik
    Stoffel, Andreas
    Stoffel, Florian
    Kwon, Bum Chul
    Ellis, Geoffrey
    Keim, Daniel A.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 1604 - 1613
  • [6] Model-Driven Visual Analytics
    Garg, Supriya
    Nam, Julia Eunju
    Ramakrishnan, I. V.
    Mueller, Klaus
    [J]. IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2008, PROCEEDINGS, 2008, : 19 - 26
  • [7] Building a Social Newsroom: Visual Analytics for Social Business Intelligence
    Zimmerman, Christopher J.
    Wessels, Henricus T. W. J.
    Vatrapu, Ravi
    [J]. PROCEEDINGS OF THE 2015 IEEE 19TH INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE WORKSHOPS AND DEMONSTRATIONS (EDOCW 2015), 2015, : 160 - 163
  • [8] A theoretical model for pattern discovery in visual analytics
    Andrienko, Natalia
    Andrienko, Gennady
    Miksch, Silvia
    Schumann, Heidrun
    Wrobel, Stefan
    [J]. Visual Informatics, 2021, 5 (01) : 23 - 42
  • [9] Visual Analytics for Temporal Hypergraph Model Exploration
    Fischer, Maximilian T.
    Arya, Devanshu
    Streeb, Dirk
    Seebacher, Daniel
    Keim, Daniel A.
    Worring, Marcel
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 550 - 560
  • [10] A theoretical model for pattern discovery in visual analytics
    Andrienko, Natalia
    Andrienko, Gennady
    Miksch, Silvia
    Schumann, Heidrun
    Wrobel, Stefan
    [J]. VISUAL INFORMATICS, 2021, 5 (01): : 23 - 42