An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data (vol 18, 94, 2017)

被引:1
|
作者
Wadsworth, W. Duncan [1 ]
Argiento, Raffaele [2 ]
Guindani, Michele [3 ]
Galloway-Pena, Jessica [4 ]
Shelburne, Samuel A. [5 ]
Vannucci, Marina [1 ]
机构
[1] Rice Univ, Dept Stat, Houston, TX 77251 USA
[2] Univ Torino & Collegio Carlo Alberto, ESOMAS Dept, Turin, Italy
[3] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Infect Dis Infect Control & Employee Hlth, Houston, TX 77030 USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Genom Med, Houston, TX 77030 USA
来源
BMC BIOINFORMATICS | 2017年 / 18卷
关键词
D O I
10.1186/s12859-017-1606-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
引用
收藏
页数:1
相关论文
共 16 条
  • [1] An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
    Wadsworth, W. Duncan
    Argiento, Raffaele
    Guindani, Michele
    Galloway-Pena, Jessica
    Shelburne, Samuel A.
    Vannucci, Marina
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [2] An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
    W. Duncan Wadsworth
    Raffaele Argiento
    Michele Guindani
    Jessica Galloway-Pena
    Samuel A. Shelburne
    Marina Vannucci
    [J]. BMC Bioinformatics, 18
  • [3] Erratum to: An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
    W. Duncan Wadsworth
    Raffaele Argiento
    Michele Guindani
    Jessica Galloway-Pena
    Samuel A. Shelburne
    Marina Vannucci
    [J]. BMC Bioinformatics, 18
  • [4] Batch effects correction for microbiome data with Dirichlet-multinomial regression
    Dai, Zhenwei
    Wong, Sunny H.
    Yu, Jun
    Wei, Yingying
    [J]. BIOINFORMATICS, 2019, 35 (05) : 807 - 814
  • [5] VARIABLE SELECTION FOR SPARSE DIRICHLET-MULTINOMIAL REGRESSION WITH AN APPLICATION TO MICROBIOME DATA ANALYSIS
    Chen, Jun
    Li, Hongzhe
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (01): : 418 - 442
  • [6] Cluster analysis of microbiome data by using mixtures of Dirichlet-multinomial regression models
    Subedi, Sanjeena
    Neish, Drew
    Bak, Stephen
    Feng, Zeny
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2020, 69 (05) : 1163 - 1187
  • [7] A Bayesian zero-inflated Dirichlet-multinomial regression model for multivariate compositional count data
    Koslovsky, Matthew D. D.
    [J]. BIOMETRICS, 2023, 79 (04) : 3239 - 3251
  • [8] Batch effects correction for microbiome data with Dirichlet-multinomial regression (vol 35, pg 807, 2018)
    Dai, Zhenwei
    Wong, Sunny H.
    Yu, Jun
    Wei, Yingying
    [J]. BIOINFORMATICS, 2019, 35 (13) : 2348 - 2348
  • [9] Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data
    Harrison, Joshua G.
    Calder, W. John
    Shastry, Vivaswat
    Buerkle, C. Alex
    [J]. MOLECULAR ECOLOGY RESOURCES, 2020, 20 (02) : 481 - 497
  • [10] Imprecise Probabilistic Prediction for Categorical Data: From Bayesian Inference to the Imprecise Dirichlet-Multinomial Model
    Bernard, Jean-Marc
    [J]. SOFT METHODS FOR HANDLING VARIABILITY AND IMPRECISION, 2008, 48 : 3 - 9