Copula Quantile Regression and Measurement of Risk in Finance

被引:0
|
作者
Guan Jing [1 ]
Shi Daoji [1 ]
He Yuanyuan [2 ]
机构
[1] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China
关键词
Quantiles Regression; Archimedean Copula; Tail dependence; Extreme value;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Quantile regression is a basic tool for estimating conditional quantiles of a response variable Y given a vector of regressors X It can be used to measure the effect of regressors not only in the center of a distribution, but also in the upper and lower tails. In this paper we use the Archimedean Copula nonlinear conditional quantile regression model to measure the tail area risk dependence in Shanghai and Shenzhen stock markets with 600 groups of data of daily closing prices from January 4, 2005 to August 21, 2007. And then the result of this method is compared with the tail dependence measure by extreme value method The results derived from quantile regression method show that Shanghai and Shenzhen stock markets have different risk dependence under different quantiles. While extreme value theory method only focuses on the estimation of tail dependence and it also shows that Shanghai and Shenzhen stock markets have strong dependence in the lower tail.
引用
收藏
页码:10320 / +
页数:2
相关论文
共 50 条
  • [1] GARCH copula quantile regression model for risk spillover analysis
    Tian, Maoxi
    Ji, Hao
    FINANCE RESEARCH LETTERS, 2022, 44
  • [2] The quantile regression - Mixture copula model applied in the financial tail risk contagion
    Liu, Ning
    Wang, Peizhi
    Dong, Jieyu
    Liu, Jing
    IPPTA: Quarterly Journal of Indian Pulp and Paper Technical Association, 2018, 30 (04) : 371 - 382
  • [3] D-vine copula based quantile regression
    Kraus, Daniel
    Czado, Claudia
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 110 : 1 - 18
  • [4] Semiparametric copula quantile regression for complete or censored data
    De Backer, Mickael
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1660 - 1698
  • [5] COPULA-BASED QUANTILE REGRESSION FOR LONGITUDINAL DATA
    Wang, Huixia Judy
    Feng, Xingdong
    Dong, Chen
    STATISTICA SINICA, 2019, 29 (01) : 245 - 264
  • [6] Quantile regression based risk measurement in the Chinese stock markets
    Wang, Xin-Yu
    Zhao, Shao-Juan
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2008, 37 (03): : 416 - 421
  • [7] Quantile Regression With Measurement Error
    Wei, Ying
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1129 - 1143
  • [8] Dynamic quantile regression for the measurement of a value at risk: An application to Colombian data
    Marino Ustacara, Daniel
    Melo Velandia, Luis Fernando
    CUADERNOS DE ECONOMIA, 2019, 38 (76): : 23 - 50
  • [9] Measurement errors in quantile regression models
    Firpo, Sergio
    Galvao, Antonio F.
    Song, Suyong
    JOURNAL OF ECONOMETRICS, 2017, 198 (01) : 146 - 164
  • [10] The Changing Dynamics of Board Independence: A Copula Based Quantile Regression Approach
    Kim, Jong-Min
    Cho, Chanho
    Jun, Chulhee
    Kim, Won Yong
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (11)