Insights on the Use of Convolutional Neural Networks for Document Image Binarization

被引:0
|
作者
Pastor-Pellicer, J. [1 ]
Espana-Boquera, S. [1 ]
Zamora-Martinez, F. [2 ]
Afzal, M. Zeshan [3 ]
Jose Castro-Bleda, Maria [1 ]
机构
[1] Univ Politecn Valencia, Dept Sistemas Informat & Computac, E-46022 Valencia, Spain
[2] Univ CEU Cardenal Herrera, Dept Ciencias Fis Math & Computac, Valencia, Spain
[3] German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany
关键词
D O I
10.1007/978-3-319-19222-2_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks have systematically shown good performance in Computer Vision and in Handwritten Text Recognition tasks. This paper proposes the use of these models for document image binarization. The main idea is to classify each pixel of the image into foreground and background from a sliding window centered at the pixel to be classified. An experimental analysis on the effect of sensitive parameters and some working topologies are proposed using two different corpora, of very different properties: DIBCO and Santgall.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 50 条
  • [1] Document Image Binarization with Fully Convolutional Neural Networks
    Tensmeyer, Chris
    Martinez, Tony
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 99 - 104
  • [2] Document Image Binarization Using Recurrent Neural Networks
    Westphal, Florian
    Lavesson, Niklas
    Grahn, Hakan
    2018 13TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS), 2018, : 263 - 268
  • [3] Convolutional Neural Networks for Document Image Classification
    Kang, Le
    Kumar, Jayant
    Ye, Peng
    Li, Yi
    Doermann, David
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3168 - 3172
  • [4] Analysis of Convolutional Neural Networks for Document Image Classification
    Tensmeyer, Chris
    Martinez, Tony
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 388 - 393
  • [5] Heterogeneous Bitwidth Binarization in Convolutional Neural Networks
    Fromm, Josh
    Patel, Shwetak
    Philipose, Matthai
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] Using Convolutional Encoder-Decoder for Document Image Binarization
    Peng, Xujun
    Cao, Huaigu
    Natarajan, Prem
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 708 - 713
  • [7] Unsupervised neural domain adaptation for document image binarization
    Castellanos, Francisco J.
    Gallego, Antonio-Javier
    Calvo-Zaragoza, Jorge
    PATTERN RECOGNITION, 2021, 119
  • [8] Binarization of Degraded Document Images Using Convolutional Neural Networks and Wavelet-Based Multichannel Images
    Akbari, Younes
    Al-Maadeed, Somaya
    Adam, Kalthoum
    IEEE ACCESS, 2020, 8 (08): : 153517 - 153534
  • [9] DP-LinkNet: A convolutional network for historical document image binarization
    Xiong, Wei
    Jia, Xiuhong
    Yang, Dichun
    Ai, Meihui
    Li, Lirong
    Wang, Song
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (05) : 1778 - 1797
  • [10] Document Image Binarization Process
    Prodan, Marcel
    Boiangiu, Costin-Anton
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2023, 14 (02): : 93 - 114