Automatic categorization of patent applications using classifier combinations

被引:0
|
作者
Mathiassen, Henrik [1 ]
Ortiz-Arroyo, Daniel [1 ]
机构
[1] Aalborg Univ, Comp Sci & Engn Dept, DK-6700 Esbjerg, Denmark
关键词
categorization; machine learning; knowledge management;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we explore the effectiveness of combining diverse machine learning based methods to categorize patent applications. Classifiers are constructed from each categorization method in the combination, based on the document representations where the best performance was obtained. Therefore, the ensemble of methods makes categorization predictions with knowledge observed from different perspectives. In addition, we explore the application of a variety of combination techniques to improve the overall performance of the ensemble of classifiers. In our experiments a refined version of the WIPO-alpha(1) document collection was used to train and evaluate the classifiers. The combination ensemble that achieved the best performance obtained an improvement of 6.51% compared to the best performing classifier participating in the combination.
引用
收藏
页码:1039 / 1047
页数:9
相关论文
共 50 条
  • [1] An Extensive Selection of Features as Combinations for Automatic Text Categorization
    Sohail, Aamir
    Kotha, Chaitanya
    Chavali, Rishanth Kanakadri
    Meghana, Krishna
    Manne, Suneetha
    Fatima, Sameen
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2013, 2014, 247 : 371 - 378
  • [2] Adaptive Ensemble Learning Strategy Using an Assistant Classifier for Large-Scale Imbalanced Patent Categorization
    Kong, Qi
    Zhao, Hai
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 601 - 608
  • [3] Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier
    AlSabban, Wesam H.
    Alotaibi, Saud S.
    Farag, Abdullah Tarek
    Rakha, Omar Essam
    Al Sallab, Ahmad A.
    Alotaibi, Majid
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (09): : 281 - 291
  • [4] AUTOMATIC MODULATION CLASSIFIER FOR MILITARY APPLICATIONS
    Iglesias, Victor
    Crajal, Jesus
    Yeste-Ojeda, Omar
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1814 - 1818
  • [5] An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations
    Ghaderyan, Peyvand
    Abbasi, Ataollah
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2016, 110 : 91 - 101
  • [6] Automatic rule learning using roughset for fuzzy classifier in fault categorization of mono-block centrifugal pump
    Sakthivel, N. R.
    Sugumaran, V.
    Nair, Binoy B.
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 196 - 203
  • [7] Automatic Text Categorization using NTC
    Jo, Taeho
    NDT: 2009 FIRST INTERNATIONAL CONFERENCE ON NETWORKED DIGITAL TECHNOLOGIES, 2009, : 26 - 31
  • [8] Patent Classification Using Hybrid Classifier Systems
    Liu, Su-Houn
    Liao, Hsiu-Li
    Pi, Shih-Ming
    Kao, Chih-Chiang
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 458 - 463
  • [9] Automatic categorization for WWW images with applications for retrieval navigation
    Nakahira, K
    Ueno, S
    Aizawa, K
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 1, PROCEEDINGS, 2004, 3331 : 174 - 181
  • [10] Automatic categorisation applications at the European Patent Office
    Krier, M
    Zaccà, F
    PROCEEDINGS OF THE 2001 INTERNATIONAL CHEMICAL INFORMATION CONFERENCE, 2001, : 80 - 93