Detecting the melting layer with a micro rain radar using a neural network approach

被引:5
|
作者
Brast, Maren [1 ]
Markmann, Piet [1 ]
机构
[1] METEK Meteorol Messtech GmbH, Fritz Str Mann Str 4, D-25337 Elmshorn, Germany
关键词
DOPPLER RADAR; BRIGHT BAND;
D O I
10.5194/amt-13-6645-2020
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A new method to determine the melting layer height using a micro rain radar (MRR) is presented. The MRR is a small vertically pointing frequency-modulated continuous-wave radar that measures Doppler spectra of precipitation. From these Doppler spectra, various variables such as Doppler velocity or spectral width can be derived. The melting layer is visible due to higher reflectivity and an acceleration of the falling particles, among others. These characteristics are fed to a neural network to determine the melting layer height. To train the neural network, the melting layer height is determined manually. The neural network is trained and tested using data from two sites that cover all seasons. For most cases, the neural network is able to detect the correct melting layer height well. Sensitivity studies show that the neural network is able to handle different MRR settings. Comparisons to radiosonde data and cloud radar data show a good agreement with respect to the melting layer heights.
引用
收藏
页码:6645 / 6656
页数:12
相关论文
共 50 条
  • [1] SNOW RADAR LAYER TRACKING USING ITERATIVE NEURAL NETWORK APPROACH
    Ibikunle, Oluwanisola
    Paden, John
    Rahnemoonfar, Maryam
    Crandall, David
    Yari, Masoud
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2960 - 2963
  • [2] Dark/bright band of a melting layer detected by coherent Doppler lidar and micro rain radar
    Wei, Tianwen
    Xia, Haiyun
    Wu, Kenan
    Yang, Yuanjian
    Liu, Qi
    Ding, Weidong
    [J]. OPTICS EXPRESS, 2022, 30 (03): : 3654 - 3663
  • [3] Detection of rain no rain condition on ground from radar data using a Kohonen neural network
    Xiao, RR
    Chandrasekar, V
    Liu, H
    Gorgucci, E
    [J]. IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 159 - 161
  • [4] RADAR estimate of attenuation at K band in stratiform rain using a physical model of the melting layer
    Capsoni, C
    Caboni, V
    D'Amico, M
    Zanardi, M
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1154 - 1156
  • [5] A neural network approach to remove rain using reconstruction and feature losses
    Javed, Kamran
    Hussain, Ghulam
    Shaukat, Furqan
    Hwang, Seong Oun
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (17): : 13129 - 13138
  • [6] A neural network approach to remove rain using reconstruction and feature losses
    Kamran Javed
    Ghulam Hussain
    Furqan Shaukat
    Seong Oun Hwang
    [J]. Neural Computing and Applications, 2020, 32 : 13129 - 13138
  • [7] A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity
    Matrosov, Sergey Y.
    Clark, Kurt A.
    Kingsmill, David E.
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2007, 46 (02) : 154 - 166
  • [8] ON THE FORECASTING OF FRONTAL RAIN USING A WEATHER RADAR NETWORK
    BROWNING, KA
    COLLIER, CG
    LARKE, PR
    MENMUIR, P
    MONK, GA
    OWENS, RG
    [J]. MONTHLY WEATHER REVIEW, 1982, 110 (06) : 534 - 552
  • [9] Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar
    Ghada, Wael
    Casellas, Enric
    Herbinger, Julia
    Garcia-Benadi, Albert
    Bothmann, Ludwig
    Estrella, Nicole
    Bech, Joan
    Menzel, Annette
    [J]. REMOTE SENSING, 2022, 14 (18)
  • [10] A New Approach for Detecting Intrusions using Jordan/Elman Neural Network
    Karimi, Hossein
    Montazeri, Mohammad Ali
    Jazi, Mohammad Davarpanah
    [J]. COMPLEXITY IN ARTIFICIAL AND NATURAL SYSTEMS, PROCEEDINGS, 2008, : 134 - 141