Insights into the adsorption/desorption of CO2 and CO on single-atom Fe-nitrogen-graphene catalyst under electrochemical environment

被引:37
|
作者
Li, Jiejie [1 ,2 ,3 ]
Liu, Jian [1 ]
Yang, Bo [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, CAS Key Lab Low Carbon Convers Sci & Engn, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
基金
国家自然科学基金重大项目;
关键词
Single atom catalyst; Electroreduction of CO2; Adsorption; CO; Ab initio molecular dynamics; DENSITY-FUNCTIONAL THEORY; DOPED GRAPHENE; ACTIVE-SITES; REDUCTION REACTION; METHANOL SYNTHESIS; REACTION-MECHANISM; ADSORPTION; ACTIVATION; WATER; DFT;
D O I
10.1016/j.jechem.2020.04.016
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Single-atom metal-nitrogen-graphene (M-N-Gra) catalysts are promising materials for electrocatalytic CO2 reduction reaction (CO2RR). However, theoretical explorations on such systems were greatly hindered because of the complexity in modeling solid/liquid interface and electrochemical environment. In the current work, we investigated two crucial processes in CO2RR, i.e. adsorption and desorption of CO2 and CO at Fe-N-4 center, with an explicit aqueous model. We used the ab initio molecular dynamics simulations associated with free energy sampling methods and electrode potential analysis to estimate the energetics under electrochemical environment, and found significant difference in aqueous solution compared with the same process in vacuum. The effect of applied electrode potential on the adsorption structures, charge transfer and free energies of both CO2 and CO on Fe-N-Gra was thoroughly discussed. These findings bring insights in fundamental understandings of the CO2RR process under realistic conditions, and facilitate future design of efficient M-N-Gra-based CO2RR catalysts. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 50 条
  • [1] Insights into the adsorption/desorption of CO2 and CO on single-atom Fe-nitrogen-graphene catalyst under electrochemical environment
    Jiejie Li
    Jian Liu
    Bo Yang
    Journal of Energy Chemistry , 2021, (02) : 20 - 25
  • [2] Electrochemical CO2 reduction of graphene single-atom/cluster catalysts
    Gao, Yongze
    Zhao, Mengdie
    Jiang, Liyun
    Yu, Qi
    MOLECULAR CATALYSIS, 2024, 562
  • [3] Theoretical Insights into Nitrogen-Doped Graphene-Supported Fe, Co, and Ni as Single-Atom Catalysts for CO2 Reduction Reaction
    Yang, Yun
    Li, Jingyan
    Zhang, Canyu
    Yang, Ziqian
    Sun, Pengliang
    Liu, Shixi
    Cao, Qiue
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (09): : 4338 - 4346
  • [4] Theoretical insights into catalytic CO2 hydrogenation over single-atom (Fe or Ni) incorporated nitrogen-doped graphene
    Poldorn, Preeyaporn
    Wongnongwa, Yutthana
    Mudchimo, Tanabat
    Jungsuttiwong, Siriporn
    JOURNAL OF CO2 UTILIZATION, 2021, 48
  • [5] Single-atom catalysis for electrochemical CO2 reduction
    Jia, Mingwen
    Fan, Qun
    Liu, Shizhen
    Qiu, Jieshan
    Sun, Zhenyu
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 1 - 6
  • [6] Activities of single-atom Fe, Co, Ni embedded on nitrogen-doped graphene for CO2 reduction: Theoretical study
    Wu, Qin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] Mechanistic understanding on effect of doping nitrogen with graphene supported single-atom Fe toward electrochemical CO2 reduction: A computational consideration
    Liu, Shao-Wen
    Chen, Hsin-Tsung
    APPLIED SURFACE SCIENCE, 2023, 630
  • [8] Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO2 Reduction
    Jia, Chen
    Li, Shunning
    Zhao, Yong
    Hocking, Rosalie K.
    Ren, Wenhao
    Chen, Xianjue
    Su, Zhen
    Yang, Wanfeng
    Wang, Yuan
    Zheng, Shisheng
    Pan, Feng
    Zhao, Chuan
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (51)
  • [9] Accelerating CO2 Electroreduction to CO Over Pd Single-Atom Catalyst
    He, Qun
    Lee, Ji Hoon
    Liu, Daobin
    Liu, Yumeng
    Lin, Zhexi
    Xie, Zhenhua
    Hwang, Sooyeon
    Kattel, Shyam
    Song, Li
    Chen, Jingguang G.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (17)
  • [10] A robust Ni single-atom catalyst for industrial current and exceptional selectivity in electrochemical CO2 reduction to CO
    Liu, Zhicheng
    Cao, Longsheng
    Wang, Manli
    Zhao, Yun
    Hou, Ming
    Shao, Zhigang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (14) : 8331 - 8339