Simplicial cohomology with coefficients in symmetric categorical groups

被引:8
|
作者
Carrasco, P [1 ]
Martínez-Moreno, J
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
[2] Univ Jaen, Dept Matemat, Jaen, Spain
关键词
categorical groups; simplicial set; cohomology; nerve; homotopy classes;
D O I
10.1023/B:APCS.0000031088.27644.ed
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce and study a cohomology theory {H-n(-, A)} for simplicial sets with coefficients in symmetric categorical groups A. We associate to a symmetric categorical group A a sequence of simplicial sets {K(A, n)}(ngreater than or equal to0), which allows us to give a representation theorem for our cohomology. Moreover, we prove that for any n greater than or equal to 3, the functor K(-, n) is right adjoint to the functor p(n), where p(n)(X.) is defined as the fundamental groupoid of the n-loop complex Omega(n)(X.). Using this adjunction, we give another proof of how symmetric categorical groups model all homotopy types of spaces Y with pi(i)(Y) = 0 for all i not equal n, n + 1 and n greater than or equal to 3; and also we obtain a classification theorem for those spaces: [-, Y] congruent to H-n(-, p(n)(Y)).
引用
收藏
页码:257 / 285
页数:29
相关论文
共 50 条
  • [1] Simplicial Cohomology with Coefficients in Symmetric Categorical Groups
    Pilar Carrasco
    Juan Martínez-Moreno
    [J]. Applied Categorical Structures, 2004, 12 : 257 - 285
  • [2] Cohomology of cofibred categorical groups
    Cegarra, AM
    Fernández, L
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 143 (1-3) : 107 - 154
  • [3] LEXSEGMENT IDEALS AND SIMPLICIAL COHOMOLOGY GROUPS
    Bonanzinga, V.
    Sorrenti, L.
    [J]. APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY II, 2007, 75 : 172 - +
  • [4] Symmetric cohomology of groups
    Pirashvili, Mariam
    [J]. JOURNAL OF ALGEBRA, 2018, 509 : 397 - 418
  • [5] 1-Cohomology of simplicial amalgams of groups
    Blok, Rieuwert J.
    Hoffman, Corneliu G.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (02) : 381 - 400
  • [6] Vanishing of cohomology groups of random simplicial complexes
    Cooley, Oliver
    Del Giudice, Nicola
    Kang, Mihyun
    Spruessel, Philipp
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (02) : 461 - 500
  • [7] 1-Cohomology of simplicial amalgams of groups
    Rieuwert J. Blok
    Corneliu G. Hoffman
    [J]. Journal of Algebraic Combinatorics, 2013, 37 : 381 - 400
  • [8] Equivariant simplicial cohomology with local coefficients and its classification
    Mukherjee, Goutam
    Sen, Debasis
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (06) : 1015 - 1032
  • [9] SYMMETRIC INVARIANTS AND COHOMOLOGY OF GROUPS
    ADEM, A
    MAGINNIS, J
    MILGRAM, RJ
    [J]. MATHEMATISCHE ANNALEN, 1990, 287 (03) : 391 - 411
  • [10] The First and Second Hochschild Cohomology Groups of Banach Algebras with Coefficients in Special Symmetric Bimodules
    E. Feizi
    H. Ghahramani
    V. Khodakarami
    [J]. Complex Analysis and Operator Theory, 2020, 14