Hierarchical semi-Markov conditional random fields for deep recursive sequential data

被引:7
|
作者
Truyen Tran [1 ]
Dinh Phung [1 ]
Hung Bui [2 ]
Venkatesh, Svetha [1 ]
机构
[1] Deakin Univ Geelong, Ctr Pattern Recognit & Data Analyt, Geelong, Vic, Australia
[2] Adobe, Adobe Res, New York, NY USA
关键词
Deep nested sequential processes; Hierarchical semi-Markov conditional; random field; Partial labelling; Constrained inference; Numerical scaling; MODELS;
D O I
10.1016/j.artint.2017.02.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of linear-chain conditional random fields to model deep nested Markov processes. It is parameterised as a conditional log-linear model and has polynomial time algorithms for learning and inference. We derive algorithms for partially-supervised learning and constrained inference. We develop numerical scaling procedures that handle the overflow problem. We show that when depth is two, the HSCRF can be reduced to the semi-Markov conditional random fields. Finally, we demonstrate the HSCRF on two applications: (i) recognising human activities of daily living (ADLs) from indoor surveillance cameras, and (ii) noun-phrase chunking. The HSCRF is capable of learning rich hierarchical models with reasonable accuracy in both fully and partially observed data cases. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 85
页数:33
相关论文
共 50 条
  • [1] A Fast Implementation of Semi-Markov Conditional Random Fields
    La The Vinh
    Lee, Sungyoung
    Lee, Young-Koo
    [J]. SIGNAL PROCESSING, IMAGE PROCESSING AND PATTERN RECOGNITION, 2011, 260 : 74 - 81
  • [2] Fingerspelling recognition with semi-Markov conditional random fields
    Kim, Taehwan
    Shakhnarovich, Greg
    Livescu, Karen
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1521 - 1528
  • [3] Semi-Markov Conditional Random Fields for sequence labeling
    He, Ming
    Du, Yongping
    [J]. Journal of Computational Information Systems, 2010, 6 (05): : 1637 - 1642
  • [4] Sequence Segmentation Using Semi-Markov Conditional Random Fields
    Sunita Sarawagi
    [J]. Journal of the Indian Institute of Science, 2019, 99 : 215 - 224
  • [5] Sequence Segmentation Using Semi-Markov Conditional Random Fields
    Sarawagi, Sunita
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (02) : 215 - 224
  • [6] Segment-Level Sequence Modeling using Gated Recursive Semi-Markov Conditional Random Fields
    Zhuo, Jingwei
    Cao, Yong
    Zhu, Jun
    Zhang, Bo
    Nie, Zaiqing
    [J]. PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2016, : 1413 - 1423
  • [7] Duration Modeling with Semi-Markov Conditional Random Fields for Keyphrase Extraction
    Lu, Xiaolei
    Chow, Tommy W. S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (04) : 1453 - 1466
  • [8] Exploring Segment Representations for Neural Semi-Markov Conditional Random Fields
    Liu, Yijia
    Che, Wanxiang
    Qin, Bing
    Liu, Ting
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 813 - 824
  • [9] Semi-Markov conditional random fields for accelerometer-based activity recognition
    La The Vinh
    Sungyoung Lee
    Hung Xuan Le
    Hung Quoc Ngo
    Hyoung Il Kim
    Manhyung Han
    Young-Koo Lee
    [J]. Applied Intelligence, 2011, 35 : 226 - 241
  • [10] Improving the Scalability of Semi-Markov Conditional Random Fields for Named Entity Recognition
    Okanohara, Daisuke
    Miyao, Yusuke
    Tsuruoka, Yoshimasa
    Tsujii, Jun'ichi
    [J]. COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, 2006, : 465 - 472