Worst VaR scenarios with given marginals and measures of association

被引:34
|
作者
Kaas, Rob [3 ]
Laeven, Roger J. A. [1 ,2 ]
Nelsen, Roger B. [4 ]
机构
[1] Tilburg Univ, NL-5000 LE Tilburg, Netherlands
[2] CentER, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[3] Univ Amsterdam, Dept Quantitat Econ, NL-1018 WB Amsterdam, Netherlands
[4] Lewis & Clark Coll, Dept Math Sci, Portland, OR 97219 USA
来源
INSURANCE MATHEMATICS & ECONOMICS | 2009年 / 44卷 / 02期
关键词
Value-at-Risk; Tail-Value-at-Risk; Worst case scenarios; Copulas; Measures of association; Dependence properties; BIVARIATE DISTRIBUTION-FUNCTIONS; BEST-POSSIBLE BOUNDS; DEPENDENT RISKS; COMONOTONICITY; SUMS; SETS;
D O I
10.1016/j.insmatheco.2008.12.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies the problem of finding best-possible upper bounds on the Value-at-Risk for a function of two random variables when the marginal distributions are known and additional nonparametric information on the dependence structure, such as the value of a measure of association, is available. The same problem for the Tail-Value-at-Risk is also briefly discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 158
页数:13
相关论文
共 50 条