Synthesis and properties of bismuth ferrite multiferroic flowers

被引:25
|
作者
Chybczynska, K. [1 ]
Lawniczak, P. [1 ]
Hilczer, B. [1 ]
Leska, B. [2 ]
Pankiewicz, R. [2 ]
Pietraszko, A. [3 ]
Kepinski, L. [3 ]
Kaluski, T. [4 ]
Cieluch, P. [4 ]
Matelski, F. [5 ]
Andrzejewski, B. [1 ]
机构
[1] Polish Acad Sci, Inst Mol Phys, PL-60179 Poznan, Poland
[2] Adam Mickiewicz Univ, Fac Chem, PL-61614 Poznan, Poland
[3] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50422 Wroclaw, Poland
[4] Natl Res Inst, Res Ctr Quarantine Invas & Genetically Modified O, Inst Plant Protect, PL-60318 Poznan, Poland
[5] Poznan Univ Tech, Fac Tech Phys, PL-60965 Poznan, Poland
关键词
HYDROTHERMAL SYNTHESIS; MAGNETIC-PROPERTIES; CARBON NANOFLOWERS; SHAPE EVOLUTION; FIELD-EMISSION; NANOSTRUCTURES; GROWTH; TEMPERATURE; NANODOTS; CRYSTAL;
D O I
10.1007/s10853-013-7957-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Novel, flowerlike bismuth ferrite BiFeO3 (BFO) multiferroic structures were prepared for the first time by means of microwave assisted hydrothermal synthesis. The flowers are composed of numerous petals formed by BFO nanocrystals and some amount of amorphous phase. The growth of the flowers begins from the central part of calyx composed of only few petals toward which subsequent petals are successively attached. The flowers exhibit enhanced magnetization due to size effect and lack of spin compensation in the spin cycloid. The dielectric properties of the flowers are influenced by BFO amorphous phase resulting in a broad dielectric permittivity maximum at 200-300 K and also by Polomska transition due to anomalous surface magnon damping above the temperature of 450 K. Possible applications of BFO flowerlike structures assume optoelectronic devices, excellent field emitters, effective solar cells, or catalyst supports.
引用
收藏
页码:2596 / 2604
页数:9
相关论文
共 50 条
  • [1] Synthesis and properties of bismuth ferrite multiferroic flowers
    K. Chybczyńska
    P. Ławniczak
    B. Hilczer
    B. Łęska
    R. Pankiewicz
    A. Pietraszko
    L. Kępiński
    T. Kałuski
    P. Cieluch
    F. Matelski
    B. Andrzejewski
    [J]. Journal of Materials Science, 2014, 49 : 2596 - 2604
  • [2] Structural and multiferroic properties of doped Bismuth Ferrite
    Sahu, Dipti R.
    Pradhan, S. K.
    Roul, B. K.
    [J]. AFRICAN REVIEW OF PHYSICS, 2018, 13 : 82 - 85
  • [3] Improved Multiferroic Properties Of Bismuth Ferrite and Sodium Bismuth Titanate Based Multiferroic Composites
    Kaswan, Kavita
    Agarwal, Ashish
    Sanghi, Sujata
    Singh, Jogender
    [J]. DAE SOLID STATE PHYSICS SYMPOSIUM 2018, 2019, 2115
  • [4] Multiferroic Bismuth Ferrite Nanoparticles: Rapid Sintering Synthesis, Characterization, and Optical Properties
    Wang, Xiong
    Lin, Yin
    Jiang, Jinguo
    [J]. NEW MATERIALS AND ADVANCED MATERIALS, PTS 1 AND 2, 2011, 152-153 : 81 - 85
  • [5] Hydrothermal Synthesis and Size-Dependent Properties of Multiferroic Bismuth Ferrite Crystallites
    Zhang, Haibo
    Kajiyoshi, Koji
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2010, 93 (11) : 3842 - 3849
  • [6] Multiferroic properties of nanostructured barium doped bismuth ferrite
    El-Desoky, M. M.
    Ayoua, M. S.
    Mostafa, M. M.
    Ahmed, M. A.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 404 : 68 - 73
  • [7] Tunable multiferroic properties of cerium doped bismuth ferrite
    Patel, Rozina
    Sawadh, Pratibha
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (03): : 255 - 265
  • [8] Multiferroic perovskite bismuth ferrite nanostructures: A review on synthesis and applications
    Kharbanda, Saarthak
    Dhanda, Neetu
    Sun, An-Cheng Aidan
    Thakur, Atul
    Thakur, Preeti
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 572
  • [9] Magnetic Properties of Carbon Stabilized Multiferroic Bismuth ferrite Nanoparticles
    Karan, T.
    Ram, S.
    Kotnala, R. K.
    [J]. SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 395 - +
  • [10] Pr doped bismuth ferrite ceramics with enhanced multiferroic properties
    Uniyal, P.
    Yadav, K. L.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (40)