A Vanishing Result for Donaldson Thomas Invariants of P1 Scroll

被引:0
|
作者
Chang, Huai Liang [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Cosection; DT invariants; two form; CYCLES;
D O I
10.1007/s10114-014-2730-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a smooth algebraic surface and let L be a line bundle on S. Suppose there is a holomorphic two form over S with zero loci to be a curve C. We show that the Donaldson Thomas invariant of the P-1 scroll X = P(L circle plus Cs) vanishes unless the curves being enumerated lie in D = P(L vertical bar(C) circle plus C-C). Our method is cosection localization of Y.-H. Kiem and J. Li.
引用
收藏
页码:2079 / 2084
页数:6
相关论文
共 50 条
  • [1] A Vanishing Result for Donaldson Thomas Invariants of P1 Scroll
    Huai Liang CHANG
    Acta Mathematica Sinica,English Series, 2014, 30 (12) : 2079 - 2084
  • [2] A vanishing result for Donaldson Thomas invariants of ℙ1 scroll
    Huai Liang Chang
    Acta Mathematica Sinica, English Series, 2014, 30 : 2079 - 2084
  • [3] Donaldson-Thomas theory of An x P1
    Maulik, Davesh
    Oblomkov, Alexei
    COMPOSITIO MATHEMATICA, 2009, 145 (05) : 1249 - 1276
  • [5] Introduction to Donaldson-Thomas invariants
    Mozgovoy, Sergey
    ADVANCES IN REPRESENTATION THEORY OF ALGEBRAS, 2013, : 195 - 210
  • [6] Instantons and Donaldson-Thomas invariants
    Cirafici, Michele
    Sinkovics, Annamaria
    Szabo, Richard J.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (7-9): : 849 - 855
  • [7] Koszul algebras and Donaldson–Thomas invariants
    Vladimir Dotsenko
    Evgeny Feigin
    Markus Reineke
    Letters in Mathematical Physics, 2022, 112
  • [8] Donaldson-Thomas invariants and flops
    Calabrese, John
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 724 : 245 - 250
  • [9] Donaldson-Thomas invariants and flops
    Calabrese, John
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 103 - 145
  • [10] Donaldson-Thomas theory of [C2/Zn+1] x P1
    Zhou, Zijun
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 3663 - 3722