Differential equations for singular values of products of Ginibre random matrices

被引:28
|
作者
Strahov, Eugene [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
关键词
products of random matrices; integrable differential equations; determinantal point processes; LEVEL-SPACING DISTRIBUTIONS; FREDHOLM DETERMINANTS; DEFORMATION;
D O I
10.1088/1751-8113/47/32/325203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It was proved by Akemann et al (2013 Phys. Rev. E 88 052118) that squared singular values of products of M complex Ginibre random matrices form a determinantal point process whose correlation kernel is expressible in terms of Meijer's G-functions. Kuijlaars and Zhang (arXiv: 1308.1003) recently showed that at the edge of the spectrum, this correlation kernel has a remarkable scaling limit K-M (x, y) which can be understood as a generalization of the classical Bessel kernel of random matrix theory. In this paper we investigate the Fredholm determinant of the operator with the kernel K-M (x, y)chi(J) (y), where J is a disjoint union of intervals, J = boolean OR(j) (a(2j-1), a(2j)), and chi(J) is the characteristic function of the set J. This Fredholm determinant is equal to the probability that J contains no particles of the limiting determinantal point process defined by K-M (x, y) (the gap probability). We derive the Hamiltonian differential associated with the corresponding Fredholm determinant, and relate them with the monodromy preserving deformation equations of the Jimbo, Miwa, Mori, Ueno and Sato theory. In the special case J = (0, s) we give a formula for the gap probability in terms of a solution of a system of nonlinear ordinary differential equations.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Singular Values of Products of Ginibre Random Matrices
    Witte, N. S.
    Forrester, P. J.
    STUDIES IN APPLIED MATHEMATICS, 2017, 138 (02) : 135 - 184
  • [2] Bulk and soft-edge universality for singular values of products of Ginibre random matrices
    Liu, Dang-Zheng
    Wang, Dong
    Zhang, Lun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1734 - 1762
  • [3] Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits
    Kuijlaars, Arno B. J.
    Zhang, Lun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (02) : 759 - 781
  • [4] Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits
    Arno B. J. Kuijlaars
    Lun Zhang
    Communications in Mathematical Physics, 2014, 332 : 759 - 781
  • [5] Singular values of products of random matrices and polynomial ensembles
    Kuijlaars, Arno B. J.
    Stivigny, Dries
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2014, 3 (03)
  • [6] Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition
    Peter J. Forrester
    Dang-Zheng Liu
    Communications in Mathematical Physics, 2016, 344 : 333 - 368
  • [7] Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition
    Forrester, Peter J.
    Liu, Dang-Zheng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (01) : 333 - 368
  • [8] Eigenvalues and singular values of products of rectangular Gaussian random matrices
    Burda, Z.
    Jarosz, A.
    Livan, G.
    Nowak, M. A.
    Swiech, A.
    PHYSICAL REVIEW E, 2010, 82 (06)
  • [9] Products of rectangular random matrices: Singular values and progressive scattering
    Akemann, Gernot
    Ipsen, Jesper R.
    Kieburg, Mario
    PHYSICAL REVIEW E, 2013, 88 (05):
  • [10] On the singular values of random matrices
    Mendelson, Shahar
    Paouris, Grigoris
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) : 823 - 834