Bifurcation Analysis and Spatiotemporal Patterns in a Diffusive Predator-Prey Model

被引:11
|
作者
Hu, Guangping [1 ]
Li, Xiaoling [1 ]
Lu, Shiping [1 ]
Wang, Yuepeng [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
来源
关键词
Hopf bifurcation; diffusion; Turing instability; pattern; chaos; LOTKA-VOLTERRA MODEL; FUNCTIONAL-RESPONSES; SYSTEM; CHAOS; DYNAMICS;
D O I
10.1142/S0218127414500813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a species predator-prey model given a reaction-diffusion system. It incorporates the Holling type II functional response and a quadratic intra-predator interaction term. We focus on the qualitative analysis, bifurcation mechanisms and pattern formation. We present the results of numerical experiments in two space dimensions and illustrate the impact of the diffusion on the Turing pattern formation. For this diffusion system, we also observe non-Turing structures such as spiral wave, target pattern and spatiotemporal chaos resulting from the time evolution of these structures.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) : 1944 - 1977
  • [2] Spatiotemporal Patterns in a Diffusive Predator-Prey Model with Prey Social Behavior
    Salih Djilali
    Soufiane Bentout
    [J]. Acta Applicandae Mathematicae, 2020, 169 : 125 - 143
  • [3] Spatiotemporal Patterns in a Diffusive Predator-Prey Model with Prey Social Behavior
    Djilali, Salih
    Bentout, Soufiane
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 125 - 143
  • [4] Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting
    Souna, Fethi
    Lakmeche, Abdelkader
    Djilali, Salih
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 140
  • [5] Bifurcation analysis of a diffusive predator-prey model with prey social behavior and predator harvesting
    Mezouaghi, Abdelheq
    Djilali, Salih
    Bentout, Soufiane
    Biroud, Kheireddine
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 718 - 731
  • [6] Bifurcation analysis of a diffusive predator-prey model with fear effect
    Cao, Jianzhi
    Li, Fang
    Hao, Pengmiao
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [7] SPATIOTEMPORAL DYNAMICS OF A DIFFUSIVE PREDATOR-PREY MODEL WITH GENERALIST PREDATOR
    Bai, Dingyong
    Yu, Jianshe
    Kang, Yun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (11): : 2949 - 2973
  • [8] Bifurcation analysis of a diffusive ratio-dependent predator-prey model
    Song, Yongli
    Zou, Xingfu
    [J]. NONLINEAR DYNAMICS, 2014, 78 (01) : 49 - 70
  • [9] Bifurcation analysis of a diffusive predator-prey model in spatially heterogeneous environment
    Wang, Biao
    Zhang, Zhengce
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (42) : 1 - 17
  • [10] Bifurcation analysis on a diffusive Holling-Tanner predator-prey model
    Ma, Zhan-Ping
    Li, Wan-Tong
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4371 - 4384