L∞-error estimates and superconvergence in maximum norm of mixed finite element methods for nonFickian flows in porous media

被引:0
|
作者
Ewing, Richard E. [1 ]
Lin, Yanping
Wang, Junping
Zhang, Shuhua
机构
[1] Texas A&M Univ, Inst Sci Computat, College Stn, TX 77843 USA
[2] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[3] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[4] Tianjin Univ Finance & Econ, Dept Math, Tianjin 300222, Peoples R China
[5] Nankai Univ, Liu Hui Ctr Appl Math, Tianjin 300071, Peoples R China
[6] Tianjin Univ, Tianjin 300072, Peoples R China
关键词
nonFickian flow; mixed finite element methods; the mixed Ritz-Volterra projection; Green's functions; error estimates and superconvergence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the basis of the estimates for the regularized Green's functions with memory terms, optimal order L-infinity-error estimates are established for the nonFickian flow of fluid in porous media by means of a mixed Ritz-Volterra projection. Moreover, local L-infinity-superconvergence estimates for the velocity along the Gauss lines and for the pressure at the Gauss points are derived for the mixed finite element method, and global L-infinity-superconvergence estimates for the velocity and the pressure are also investigated by virtue of an interpolation post-processing technique. Meanwhile, some useful a-posteriori error estimators are presented for this mixed finite element method.
引用
收藏
页码:301 / 328
页数:28
相关论文
共 50 条