Reduced Graphene Oxide-Wrapped Novel CoIn2S4 Spinel Composite Anode Materials for Li-ion Batteries

被引:7
|
作者
Lee, Ting-Yu [1 ]
Liu, Wei-Ren [1 ]
机构
[1] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Ctr Circular Econ, Dept Chem Engn, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
关键词
transition metal sulfides; reduced graphene oxide; lithium-ion battery; CoIn2S4; anode; HIGH-CAPACITY; MESOPOROUS CO9S8; PERFORMANCE; STABILITY; GRAPHITE; POWDERS; CUS;
D O I
10.3390/nano12244367
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we proposed a novel CoIn2S4/reduced graphene oxide (CoIn2S4/rGO) composite anode using a hydrothermal method. By introducing electronic-conductive reduced graphene oxide (rGO) to buffer the extreme volume expansion of CoIn2S4, we prevented its polysulfide dissolution during the lithiation/de-lithiation processes. After 100 cycles, the pristine CoIn2S4 electrode demonstrated poor cycle performance of only 120 mAh/g at a current density of 0.1 A/g. However, the composition-optimized CoIn2S4/rGO composite anode demonstrated a reversible capacity of 580 mAh/g for 100 cycles, which was an improvement of 4.83 times. In addition, the ex situ XRD measurements of the CoIn2S4/rGO electrode were conducted to determine the reaction mechanism and electrochemical behavior. These results suggest that the as-synthesized CoIn2S4/rGO composite anode is a promising anode material for lithium ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reduced graphene oxide-wrapped pyrite as anode materials for Li-ion batteries with enhanced long-term performance under harsh operational environments
    Du, Yao
    Wu, Songping
    Huang, Mingbao
    Tian, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2017, 326 : 257 - 264
  • [2] Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
    Qinghong Wang
    Can Guo
    Yuxuan Zhu
    Jiapeng He
    Hongqiang Wang
    Nano-Micro Letters, 2018, 10
  • [3] Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
    Qinghong Wang
    Can Guo
    Yuxuan Zhu
    Jiapeng He
    Hongqiang Wang
    Nano-Micro Letters, 2018, 10 (02) : 126 - 134
  • [4] In situ synthesis rodlike MnO2/reduced graphene oxide composite as anode materials for Li-ion batteries
    Li, Zongyang
    Liu, Hongdong
    Ruan, Haibo
    Hu, Rong
    Su, Yongyao
    Hu, Zhongli
    Huang, Jiamu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (23) : 18099 - 18105
  • [5] In situ synthesis rodlike MnO2/reduced graphene oxide composite as anode materials for Li-ion batteries
    Zongyang Li
    Hongdong Liu
    Haibo Ruan
    Rong Hu
    Yongyao Su
    Zhongli Hu
    Jiamu Huang
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 18099 - 18105
  • [6] Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
    Wang, Qinghong
    Guo, Can
    Zhu, Yuxuan
    He, Jiapeng
    Wang, Hongqiang
    NANO-MICRO LETTERS, 2018, 10 (02)
  • [7] Reduced Graphene Oxide-Wrapped Nickel-Rich Cathode Materials for Lithium Ion Batteries
    Shim, Jae-Hyun
    Kim, Young-Min
    Park, Miji
    Kim, Jongsik
    Lee, Sanghun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) : 18720 - 18729
  • [8] Composite anode materials for Li-ion batteries
    Wen, Zhaoyin
    Yang, Xuefin
    Huang, Shahua
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1041 - 1045
  • [9] Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries
    Miao X.-F.
    Liu Y.-C.
    Zhang X.-X.
    Chen S.-J.
    Chen Y.-Q.
    Zhang Y.-N.
    Zhang, Yi-Ning (ynzhang@fjirsm.ac.cn), 2017, Science Press (39): : 407 - 416
  • [10] Self-assembly of SiO/Reduced Graphene Oxide composite as high-performance anode materials for Li-ion batteries
    Yuan, Xueqin
    Xin, Hongxing
    Qin, Xiaoying
    Li, Xiangjun
    Liu, Yongfei
    Guo, Haifeng
    ELECTROCHIMICA ACTA, 2015, 155 : 251 - 256