Trapping Light in Plain Sight: Embedded Photonic Eigenstates in Zero-Index Metamaterials

被引:75
|
作者
Monticone, Francesco [1 ]
Doeleman, Hugo M. [2 ,3 ]
Den Hollander, Wouter [2 ]
Koenderink, A. Femius [2 ,3 ]
Alu, Andrea [4 ,5 ,6 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
[2] AMOLF, Ctr Nanophoton, Amsterdam, Netherlands
[3] Univ Amsterdam, Inst Phys, Van der Waals Zeeman Inst, Amsterdam, Netherlands
[4] CUNY, Adv Sci Res Ctr, Photon Initiat, New York, NY 10031 USA
[5] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[6] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
关键词
embedded eigenstates; epsilon-near-zero media; leaky waves; metamaterials; scattering; BOUND-STATES; RADIATION; FIELD;
D O I
10.1002/lpor.201700220
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Confining electromagnetic energy is crucial to enhance light-matter interactions, with important implications for science and technology. Here, the opportunities offered by trapping and confining light in open structures, based on the concept of embedded eigenstates within the radiation continuum enabled by zero-index metamaterials, are discussed. Building upon the physical insights offered by the analysis, a general platform is put forward that allows the realization of extremely high field enhancements in open structures under external illumination. Structures supporting embedded eigenstates represent a rare example of physical systems in which extreme-in principle unbounded-responses can be tamed. The proposed design recipe to realize bound states in the continuum also offers a simple model that allows testing of important questions that surround the concept of embedded eigenstates, such as their effect on the local density of photonic states. The findings help clarify which nano-optical and radio-wave applications may benefit from this unusual and singular response.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Zero-index metamaterials for classical and quantum light
    Liberal, Inigo
    Alu, Andrea
    Engheta, Nader
    [J]. APPLIED PHYSICS LETTERS, 2022, 120 (26)
  • [2] Waveguide splitting and squeezing in zero-index metamaterials embedded with defects
    Ding, Erliang
    Wang, Yangyang
    Liu, Xiaozhou
    Gong, Xiufen
    [J]. AIP ADVANCES, 2015, 5 (10):
  • [3] Zero-Index Weyl Metamaterials
    Zangeneh-Nejad, Farzad
    Fleury, Romain
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (05)
  • [4] On-chip zero-index metamaterials
    Li, Yang
    Kita, Shota
    Munoz, Philip
    Reshef, Orad
    Vulis, Daryl I.
    Yin, Mei
    Loncar, Marko
    Mazur, Eric
    [J]. NATURE PHOTONICS, 2015, 9 (11) : 738 - +
  • [5] On-chip zero-index metamaterials
    Yang Li
    Shota Kita
    Philip Muñoz
    Orad Reshef
    Daryl I. Vulis
    Mei Yin
    Marko Lončar
    Eric Mazur
    [J]. Nature Photonics, 2015, 9 : 738 - 742
  • [6] Magnetically tunable zero-index metamaterials
    Yang, Yucong
    Liu, Yueyang
    Qin, Jun
    Cai, Songgang
    Su, Jiejun
    Zhou, Peiheng
    Deng, Longjiang
    Li, Yang
    Bi, Lei
    [J]. PHOTONICS RESEARCH, 2023, 11 (10) : 1613 - 1626
  • [7] Doppler effect in zero-index metamaterials
    Ran, Jia
    Zhang, Yewen
    Chen, Xiaodong
    Fang, Kai
    Chen, Hong
    [J]. 2016 10TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2016, : 301 - 303
  • [8] Magnetically tunable zero-index metamaterials
    YUCONG YANG
    YUEYANG LIU
    JUN QIN
    SONGGANG CAI
    JIEJUN SU
    PEIHENG ZHOU
    LONGJIANG DENG
    YANG LI
    LEI BI
    [J]. Photonics Research, 2023, (10) : 1613 - 1626
  • [9] Metamaterials: electromagnetic enhancement at zero-index transition
    Litchinitser, Natalia M.
    Maimistov, Andrei I.
    Gabitov, Ildar R.
    Sagdeev, Roald Z.
    Shalaev, Vladimir M.
    [J]. OPTICS LETTERS, 2008, 33 (20) : 2350 - 2352
  • [10] Zero-index metamaterials for Dirac fermion in graphene
    Ren, Yinghui
    Wan, Pengcheng
    Zhou, Ling
    Zhao, Ruihuang
    Wang, Qianjing
    Huang, Di
    Guo, Haiqin
    Du, Junjie
    [J]. PHYSICAL REVIEW B, 2021, 103 (08)