Multiple planar coincidences with N-fold symmetry

被引:9
|
作者
Baake, Michael
Grimm, Uwe
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Open Univ, Dept Math, Milton Keynes MK7 6AA, Bucks, England
来源
ZEITSCHRIFT FUR KRISTALLOGRAPHIE | 2006年 / 221卷 / 08期
关键词
lattices; coincidence ideals; planar modules; cyclotomic fields; dirichlet series; asymptotic properties;
D O I
10.1524/zkri.2006.221.8.571
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Planar coincidence site lattices and modules with N-fold symmetry are well understood in a formulation based on cyclotomic fields, in particular for the class number one case, where they appear as certain principal ideals in the corresponding ring of integers. We extend this approach to multiple coincidences, which apply to triple or multiple junctions. In particular, we give explicit results for spectral, combinatorial and asymptotic properties in terms of Dirichlet series generating functions.
引用
收藏
页码:571 / 581
页数:11
相关论文
共 50 条
  • [1] Planar coincidences for N-fold symmetry
    Pleasants, PAB
    Baake, M
    Roth, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) : 1029 - 1058
  • [2] RANDOM N-FOLD COINCIDENCES
    IVKOVIC, Z
    KOCHER, M
    STANOJEV.CV
    [J]. JOURNAL OF APPLIED PROBABILITY, 1970, 7 (03) : 785 - +
  • [3] Rate of n-fold accidental coincidences
    Janossy, L
    [J]. NATURE, 1944, 153 : 592 - 593
  • [4] Rate of n-fold accidental coincidences
    Janossy, L
    [J]. NATURE, 1944, 153 : 165 - 165
  • [5] Bravais colourings of planar modules with N-fold symmetry
    Baake, M
    Grimm, U
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2004, 219 (02): : 72 - 80
  • [6] A Computer Search for Planar Substitution Tilings with n-Fold Rotational Symmetry
    Gaehler, Franz
    Kwan, Eugene E.
    Maloney, Gregory R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (02) : 445 - 465
  • [7] LINE ACQUISITION OF N-FOLD COINCIDENCES AT A PULSED ACCELERATOR
    JUNGHANS, G
    BANGERT, K
    BERG, UEP
    STOCK, R
    WIENHARD, K
    [J]. NUCLEAR INSTRUMENTS & METHODS, 1977, 144 (02): : 293 - 298
  • [8] MEASURES OF N-FOLD SYMMETRY FOR CONVEX SETS
    CHUI, CK
    PARNES, MN
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 26 (03) : 480 - &
  • [9] Discrete Tomography: Magic Numbers for N-Fold Symmetry
    Huck, C.
    Moll, M.
    Nilsson, J.
    [J]. ACTA PHYSICA POLONICA A, 2014, 126 (02) : 486 - 489
  • [10] COROTATING STEADY VORTEX FLOWS WITH N-FOLD SYMMETRY
    TURKINGTON, B
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (04) : 351 - 369