Runge-Kutta methods and viscous wave equations

被引:10
|
作者
Verwer, J. G. [1 ]
机构
[1] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
关键词
Primary: 65L05; 65L06; 65L20; 65M12; 65M20; G.1.7; G.1.8;
D O I
10.1007/s00211-009-0211-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical time integration of a class of viscous wave equations by means of Runge-Kutta methods. The viscous wave equation is an extension of the standard second-order wave equation including advection-diffusion terms differentiated in time. The viscous wave equation can be very stiff so that for time integration traditional explicit methods are no longer efficient. A-Stable Runge-Kutta methods are then very good candidates for time integration, in particular diagonally implicit ones. Special attention is paid to the question how the A-Stability property can be translated to this non-standard class of viscous wave equations.
引用
收藏
页码:485 / 507
页数:23
相关论文
共 50 条
  • [1] Runge–Kutta methods and viscous wave equations
    J. G. Verwer
    [J]. Numerische Mathematik, 2009, 112 : 485 - 507
  • [2] Partially Implicit Runge-Kutta Methods for Wave-Like Equations
    Cordero-Carrion, Isabel
    Cerda-Duran, Pablo
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 267 - 278
  • [3] Runge-Kutta methods for fuzzy differential equations
    Palligkinis, S. Ch.
    Papageorgiou, G.
    Famelis, I. Th.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 97 - 105
  • [4] Runge-Kutta methods for Fuzzy Differential Equations
    Palligkinis, S. Ch.
    Papageorgiou, G.
    Famelis, I. Th.
    [J]. Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 444 - 448
  • [5] ON THE ALGEBRAIC EQUATIONS IN IMPLICIT RUNGE-KUTTA METHODS
    HUNDSDORFER, WH
    SPIJKER, MN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) : 583 - 594
  • [6] Runge-Kutta Methods for Ordinary Differential Equations
    Butcher, J. C.
    [J]. NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 37 - 58
  • [7] Kronecker product splitting preconditioners for implicit Runge-Kutta discretizations of viscous wave equations
    Chen, Hao
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4429 - 4440
  • [8] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    [J]. APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [9] THE RUNGE-KUTTA METHODS
    THOMAS, B
    [J]. BYTE, 1986, 11 (04): : 191 - &
  • [10] A Runge-Kutta discontinuous Galerkin method for viscous flow equations
    Liu, Hongwei
    Xu, Kun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 1223 - 1242