Surface mechanics implications for a nanovoided metallic thin-plate under uniform boundary loading

被引:14
|
作者
Mi, Changwen [1 ]
Kouris, Demitris [2 ]
机构
[1] Southeast Univ, Dept Engn Mech, Jiangsu Key Lab Engn Mech, Nanjing 210096, Jiangsu, Peoples R China
[2] Texas Christian Univ, Coll Sci & Engn, Ft Worth, TX 76129 USA
基金
中国国家自然科学基金;
关键词
Surface effect; thin-plate; nanovoid; stress concentration; uniaxial load; STRESS-CONCENTRATION; NANO-INHOMOGENEITIES; ELASTIC PROPERTIES; NANOPARTICLES; INTERFACES; TENSION; SOLIDS; FILMS;
D O I
10.1177/1081286515595262
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The goal of this work is to shed some light on the problem of stress concentrations near nanoscale pores (nanovoids) in metallic thin-plates subjected to mechanical load. The limitations of classical elasticity at the nanoscale can be mitigated by the incorporation of a coherent surface model. The disturbance of the elastic field due to a nanovoid in an elastic thin-plate can be determined using a three-dimensional displacement formulation. Numerical results suggest that the surface energy and corresponding surface stress of the nanovoid significantly alter the local stress distribution and the relevant stress concentrations. The magnitude of this effect depends on parameters like the void size, film thickness, applied load, and material properties of the thin-plate and the void surface. The results of the study suggest that nanoporous thin-plates could be optimized for lower stress concentrations and might be less vulnerable to fracture, at least when subjected to uniaxial tensile loads.
引用
收藏
页码:401 / 419
页数:19
相关论文
共 50 条
  • [1] Joint surface modeling with thin-plate splines
    Boyd, SK
    Ronsky, JL
    Lichti, DD
    Salkauskas, D
    Chapman, MA
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1999, 121 (05): : 525 - 532
  • [2] THE UNIFORM-CONVERGENCE OF THIN-PLATE SPLINE INTERPOLATION IN 2 DIMENSIONS
    POWELL, MJD
    NUMERISCHE MATHEMATIK, 1994, 68 (01) : 107 - 128
  • [3] Accurate solutions of a thin rectangular plate deflection under large uniform loading
    Liu, Ling
    Zhong, Xiaoxu
    Liao, Shijun
    APPLIED MATHEMATICAL MODELLING, 2023, 123 : 241 - 258
  • [4] Nonsingular kernel boundary element method for thin-plate bending problems
    Wang, Zuohui
    Applied Mathematics and Mechanics (English Edition), 1993, 14 (08) : 767 - 776
  • [5] NONSINGULAR KERNEL BOUNDARY ELEMENT METHOD FOR THIN-PLATE BENDING PROBLEMS
    王左辉
    AppliedMathematicsandMechanics(EnglishEdition), 1993, (08) : 767 - 776
  • [6] THIN-PLATE SPLINE SURFACE APPROXIMATION USING COONS PATCHES
    CHENG, CC
    ZHENG, YF
    COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (03) : 269 - 287
  • [7] Swelling properties of thin-plate hydrogels under mechanical constraint
    Suzuki, A
    Wu, XR
    Kuroda, M
    Ishiyama, E
    Kanama, D
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (2A): : 564 - 569
  • [8] NONLINEAR SCATTERING OF A BENDING WAVE AT A CRACK ON THE SURFACE OF A THIN-PLATE
    ZAREMBO, LK
    SHANIN, AV
    ACOUSTICAL PHYSICS, 1995, 41 (04) : 515 - 517
  • [9] An inverse analysis of warpage for trilayer thin-plate under thermal cycles
    Shirazi, A.
    Varvani-Farahani, A.
    Lu, H.
    MATERIALS & DESIGN, 2010, 31 (09) : 4219 - 4228
  • [10] Swelling dynamics of constrained thin-plate gels under an external force
    Yamaue, T
    Doi, M
    PHYSICAL REVIEW E, 2004, 70 (01):