Classification of Grothendieck rings of complex fusion categories of multiplicity one up to rank six

被引:7
|
作者
Liu, Zhengwei [1 ,2 ]
Palcoux, Sebastien [2 ]
Ren, Yunxiang [3 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Dept Math, Beijing, Peoples R China
[2] Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
Fusion ring; Grothendieck ring; Fusion category; Categorification; Classification; Multiplicity-free;
D O I
10.1007/s11005-022-01542-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper classifies the Grothendieck rings of complex fusion categories of multiplicity one up to rank six. Among 72 possible fusion rings, 25 ones are filtered out by using categorification criteria. Each of the remaining 47 fusion rings admits a unitary complex categorification. We found 6 new Grothendieck rings, categorified by applying a localization approach of the pentagon equation.
引用
收藏
页数:37
相关论文
共 10 条
  • [1] Classification of Grothendieck rings of complex fusion categories of multiplicity one up to rank six
    Zhengwei Liu
    Sebastien Palcoux
    Yunxiang Ren
    Letters in Mathematical Physics, 2022, 112
  • [2] On the Grothendieck rings of equivariant fusion categories
    Burciu, Sebastian
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [3] On the Grothendieck ring of fusion categories of rank 5
    Wang, Kai
    Dong, Jingcheng
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4214 - 4222
  • [4] On the classification of the Grothendieck rings of non-self-dual modular categories
    Hong, Seung-moon
    Rowell, Eric
    JOURNAL OF ALGEBRA, 2010, 324 (05) : 1000 - 1015
  • [5] ON THE CLASSIFICATION OF POINTED FUSION CATEGORIES UP TO WEAK MORITA EQUIVALENCE
    Uribe, Bernardo
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 290 (02) : 437 - 466
  • [6] Classification of Pointed Fusion Categories of dimension 8 up to weak Morita equivalence
    Munoz, Alvaro
    Uribe, Bernardo
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (09) : 3873 - 3888
  • [7] Classification and realization theorems for one class of finite-rank torsion-free rings
    Blagoveshchenskaya, E. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (04) : 770 - 771
  • [8] Classification of pointed fusion categories of dimension p3 up to weak Morita Equivalence
    Maya, Kevin
    Mejia Castano, Adriana
    Uribe, Bernardo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (01)
  • [9] Classification of ribbon 2-knots of 1-fusion with length up to six
    Kanenobu, Taizo
    Takahashi, Kota
    TOPOLOGY AND ITS APPLICATIONS, 2021, 301
  • [10] Built-up area extraction in PolSAR imagery using real-complex polarimetric features and feature fusion classification network
    Guo, Zihuan
    Zhang, Hong
    Ge, Ji
    Shi, Zhongqi
    Xu, Lu
    Tang, Yixian
    Wu, Fan
    Wang, Yuanyuan
    Wang, Chao
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 134