Inertia-free fault-tolerant spacecraft attitude tracking using control allocation

被引:78
|
作者
Shen, Qiang [1 ]
Wang, Danwei [1 ]
Zhu, Senqiang [1 ]
Poh, Eng Kee [1 ]
机构
[1] Nanyang Technol Univ, EXQUISITUS, Ctr ECity, Singapore 639798, Singapore
关键词
Fault-tolerant control (FTC); Control allocation; Attitude tracking; Spacecraft control; ADAPTIVE-CONTROL; CONTROL DESIGN; SYSTEMS; SATELLITES; FEEDBACK;
D O I
10.1016/j.automatica.2015.09.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of fault-tolerant attitude tracking control for an over-actuated spacecraft in the presence of actuator faults/failures and external disturbances is addressed in this paper. Assuming that information on the inertia and bounds on the disturbances are unknown, a novel fault-tolerant control (FTC) law incorporating on-line control allocation (CA) is developed to handle actuator faults/failures. To improve the robustness of the adaptive law and stop the adaptive gain from increasing, the time-varying dead-zone modification technique is employed in parameter adaptations. It is shown that uniform ultimate boundedness of the tracking errors can be ensured. To illustrate the efficiency of the CA-based FTC strategy, numerical simulations are carried out for a rigid spacecraft under actuator faults and failures. (C) 2015 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [1] Adaptive fault-tolerant attitude tracking control for spacecraft formation with unknown inertia
    Zhu, Zhihao
    Guo, Yu
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (01) : 13 - 26
  • [2] Control allocation based fault-tolerant control design for spacecraft attitude tracking
    Shen, Qiang
    Wang, Danwei
    Zhu, Senqiang
    Poh, Eng Kee
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4983 - 4988
  • [3] Inertia-Free Spacecraft Attitude Control Using Reaction Wheels
    Weiss, Avishai
    Kolmanovsky, Ilya
    Bernstein, Dennis S.
    Sanyal, Amit
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (05) : 1425 - 1439
  • [4] Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties
    Qinglei HU
    Li XIAO
    Chenliang WANG
    Chinese Journal of Aeronautics, 2019, 32 (03) : 674 - 687
  • [5] Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties
    Hu, Qinglei
    Xiao, Li
    Wang, Chenliang
    CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (03) : 674 - 687
  • [6] Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties
    Qinglei HU
    Li XIAO
    Chenliang WANG
    Chinese Journal of Aeronautics, 2019, (03) : 674 - 687
  • [7] Neural Adaptive Fault-Tolerant Control for Attitude Tracking of Spacecraft
    Wang, Pengcheng
    Wang, Chenliang
    Hu, Qinglei
    Zhu, Bing
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 982 - 987
  • [8] Adaptive Fault-Tolerant Spacecraft Pose Tracking With Control Allocation
    Gui, Haichao
    de Ruiter, Anton H. J.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (02) : 479 - 494
  • [9] Fault-Tolerant Adaptive Asymptotic Attitude Tracking Control for a Rigid Spacecraft
    Wang, Wencong
    Hou, Mingshan
    Liu, Bojun
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2021, 45 (04) : 1383 - 1394
  • [10] Fault-Tolerant Adaptive Asymptotic Attitude Tracking Control for a Rigid Spacecraft
    Wencong Wang
    Mingshan Hou
    Bojun Liu
    Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2021, 45 : 1383 - 1394