The topological gradient in anisotropic elasticity with an eye towards lightweight design

被引:6
|
作者
Schneider, Matti [1 ]
Andrae, Heiko [2 ]
机构
[1] Tech Univ Chemnitz, Dept Lightweight Struct & Polymer Technol, Fac Mech Engn, D-09107 Chemnitz, Germany
[2] Fraunhofer Inst Ind Math ITWM, D-67663 Kaiserslautern, Germany
关键词
topological gradient; topology optimization; asymptotic analysis; elastic moment tensor; Eshelby's tensor; anisotropic elasticity; lightweight design; ELLIPSOIDAL INCLUSION; SHAPE OPTIMIZATION; FIELD; TENSORS;
D O I
10.1002/mma.2918
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a representation formula for the topological gradient with respect to arbitrary quadratic yield functionals and anisotropic elastic materials, thus laying the theoretical foundations for topological sensitivity analysis in lightweight design. For compliance, minimization involving general anisotropic materials and ellipsoidal perturbations, we give a closed formula for the topological gradient, enabling topology optimization of integrated designs involving several reinforced materials. If the materials are transversely isotropic and the perturbations are spheriodal, we even obtain an analytical formula. For general anisotropy, recent advances in the computation of Eshelby's tensor enable rapid numerical computation of the topological gradient.Restricting to isotropic materials and spheroidal inclusions, we obtain an analytical formula for minimizing isotropic yield functionals with applications to microscale-scale sensitivity analysis of fiber reinforced composites or reinforcing analysis of brittle materials. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1624 / 1641
页数:18
相关论文
共 50 条
  • [1] The topological derivative in anisotropic elasticity
    Bonnet, Marc
    Delgado, Gabriel
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2013, 66 (04): : 557 - 586
  • [2] On scale invariance in anisotropic plasticity, gradient plasticity and gradient elasticity
    Aifantis, Elias C.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2009, 47 (11-12) : 1089 - 1099
  • [3] Anisotropic gradient elasticity for modelling bone tissue
    Gitman, I. M.
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 52 (01) : 136 - 138
  • [4] EDGE DETECTION AND IMAGE RESTORATION WITH ANISOTROPIC TOPOLOGICAL GRADIENT
    Larnier, Stanislas
    Fehrenbach, Jerome
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1362 - 1365
  • [5] Symmetry and applied variational models for strain gradient anisotropic elasticity
    Lurie S.A.
    Belov P.A.
    Solyaev Y.O.
    Lykosova E.D.
    Volkov A.V.
    Volkov, Aleksandr V. (mambronius@yandex.ru), 1600, Begell House Inc. (12): : 75 - 99
  • [6] Development of the “Separated Anisotropy” Concept in the Theory of Gradient Anisotropic Elasticity
    P. A. Belov
    S. A. Lurie
    Mechanics of Composite Materials, 2021, 57 : 427 - 438
  • [7] Development of the "Separated Anisotropy" Concept in the Theory of Gradient Anisotropic Elasticity
    Belov, P. A.
    Lurie, S. A.
    MECHANICS OF COMPOSITE MATERIALS, 2021, 57 (04) : 427 - 438
  • [8] Topological Design of a Lightweight Sandwich Aircraft Spoiler
    Liu, Jie
    Ou, Haifeng
    He, Junfeng
    Wen, Guilin
    MATERIALS, 2019, 12 (19)
  • [9] The topological derivative of stress-based cost functionals in anisotropic elasticity
    Delgado, Gabriel
    Bonnet, Marc
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (10) : 1144 - 1166
  • [10] HIGHER ORDER TOPOLOGICAL DERIVATIVES FOR THREE-DIMENSIONAL ANISOTROPIC ELASTICITY
    Bonnet, Marc
    Cornaggia, Remi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (06): : 2069 - 2092