Effects of Pad Temperature on the Chemical Mechanical Polishing of Tungsten

被引:8
|
作者
Kim, Hong Jin [1 ]
Ahn, Si-Gyung [1 ]
Qin, Liqiao [1 ]
Koli, Dinesh [1 ]
Govindarajulu, Venugopal [1 ]
Moon, Yongsik [1 ]
机构
[1] GLOBALFOUNDRIES, Malta, NY 12020 USA
关键词
CMP; INTEGRATION; REMOVAL;
D O I
10.1149/2.0071410jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the effects of pad temperature on the chemical mechanical polishing (CMP) of tungsten were investigated. During polishing, the pad temperature was monitored and the removal rate behavior with respect to the pad temperature evolution was explored. The pad temperature was increased during tungsten CMP, and the tungsten removal rate increased accordingly. Further, it was found that the two had a strong correlation. Although tetraethyl orthosilicate (TEOS) polishing experiment showed that the pad temperature increased similarly under various experimental conditions, the TEOS removal rate did not change for all conditions. A novel pad-cooling nozzle effectively reduced the pad temperature during tungsten polishing and influenced the tungsten removal rate drop. Table motor current monitoring revealed that friction forces were almost identical under all experimental conditions for tungsten polishing regardless of the application of pad cooling. On the basis of pad temperature and table motor current data, it was clear that the tungsten removal rate was determined by temperature, indicating that the tungsten removal mechanism was mostly driven by a chemical reaction. Further, the pad cooling function can be used to control the tungsten removal rate effectively, resulting in a stable tungsten CMP process. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:P310 / P314
页数:5
相关论文
共 50 条
  • [1] Effects of conditioning temperature on polishing pad for oxide chemical mechanical polishing process
    Kim, NH
    Choi, GW
    Park, JS
    Seo, YJ
    Lee, WS
    MICROELECTRONIC ENGINEERING, 2005, 82 (3-4) : 680 - 685
  • [2] Analysis on pad effects in chemical mechanical polishing
    School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China
    不详
    Beijing Jiaotong Daxue Xuebao, 2007, 1 (18-21):
  • [3] Polishing Pad in Chemical Mechanical Polishing
    Cao W.
    Deng Z.-H.
    Li Z.-Y.
    Ge J.-M.
    Surface Technology, 2022, 51 (07): : 27 - 41
  • [4] Tungsten chemical mechanical polishing
    Elbel, N
    Neureither, B
    Ebersberger, B
    Lahnor, P
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (05) : 1659 - 1664
  • [5] Pad conditioning in chemical mechanical polishing
    Hooper, BJ
    Byrne, G
    Galligan, S
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 123 (01) : 107 - 113
  • [6] Modeling of Polishing Pad Wear in Chemical Mechanical Polishing
    Li, Mao
    Zhu, Yongwei
    Li, Jun
    Lin, Kui
    MACHINING AND ADVANCED MANUFACTURING TECHNOLOGY X, 2010, 431-432 : 318 - 321
  • [7] Effects of pad properties on material removal in chemical mechanical polishing
    Park, K. H.
    Kim, H. J.
    Chang, O. M.
    Jeong, H. D.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 187 : 73 - 76
  • [8] Pad Scratching in Chemical-Mechanical Polishing: The Effects of Mechanical and Tribological Properties
    Kim, Sanha
    Saka, Nannaji
    Chun, Jung-Hoon
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2014, 3 (05) : P169 - P178
  • [9] Polishing Characteristics of Hydrophilic Pad in Chemical Mechanical Polishing Process
    Tsai, Ming-Yi
    Chen, Chiou-Yuan
    He, Ying-Rong
    MATERIALS AND MANUFACTURING PROCESSES, 2012, 27 (06) : 650 - 657
  • [10] Contribution of porous pad to chemical mechanical polishing
    Zhang, Chaohui
    Luo, Jianbin
    NANOSCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2007, 121-123 : 1133 - 1137