PSEUDO-BOOLEAN FUNCTIONS AND THE MULTIPLICITY OF THE ZEROS OF POLYNOMIALS

被引:4
|
作者
Erdelyi, Tamas [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
关键词
COSINE POLYNOMIALS; THEOREM; RECONSTRUCTION; BOUNDS; ROOTS;
D O I
10.1007/s11854-015-0025-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A highlight of this paper states that there is an absolute constant c(1) > 0 such that every polynomial P of the form P(z) = Sigma(n)(j=0) a(j)z(j) , a(j is an element of) C with vertical bar a(0)vertical bar = 1, vertical bar a(j)vertical bar <= M-1((n) (j)), j = 1,2, ... , n, for some 2 <= M <= e(n) has at most n- left perpendicular c(1 root)n log M right perpendicular zeros at 1. This is compared with some earlier similar results reviewed in the introduction and closely related to some interesting Diophantine problems. Our most important tool is an essentially sharp result due to Coppersmith and Rivlin asserting that if F-n = {1, 2, ... , n}, there exists an absolute constant c > 0 such that vertical bar P(0)vertical bar <= exp(cL) max(x is an element of Fn) vertical bar P(x)vertical bar for every polynomial P of degree at most m <= root nL/16 with 1 <= L < 16n. A new proof of this inequality is included in our discussion.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [1] Pseudo-boolean functions and the multiplicity of the zeros of polynomials
    Tamás Erdélyi
    Journal d'Analyse Mathématique, 2015, 127 : 91 - 108
  • [2] On pseudo-Boolean polynomials
    Leont'ev, V. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (11) : 1926 - 1932
  • [3] On pseudo-Boolean polynomials
    V. K. Leont’ev
    Computational Mathematics and Mathematical Physics, 2015, 55 : 1926 - 1932
  • [4] Calculus of Pseudo-Boolean Functions
    Zhao Yin
    Cheng Daizhan
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 267 - 272
  • [5] Locally monotone Boolean and pseudo-Boolean functions
    Couceiro, Miguel
    Marichal, Jean-Luc
    Waldhauser, Tamas
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) : 1651 - 1660
  • [6] Compact quadratizations for pseudo-Boolean functions
    Boros, Endre
    Crama, Yves
    Rodriguez-Heck, Elisabeth
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (03) : 687 - 707
  • [7] Understanding Transforms of Pseudo-Boolean Functions
    Whitley, Darrell
    Aguirre, Hernan
    Sutton, Andrew
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 760 - 768
  • [8] Compact quadratizations for pseudo-Boolean functions
    Endre Boros
    Yves Crama
    Elisabeth Rodríguez-Heck
    Journal of Combinatorial Optimization, 2020, 39 : 687 - 707
  • [9] Quadratization of symmetric pseudo-Boolean functions
    Anthony, Martin
    Boros, Endre
    Crama, Yves
    Gruber, Aritanan
    DISCRETE APPLIED MATHEMATICS, 2016, 203 : 1 - 12
  • [10] Image Edge Detection using Pseudo-Boolean Polynomials
    Chikake, Tendai Mapungwana
    Goldengorin, Boris
    SIXTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2023, 2024, 13072